ФОТОЛИЗ АЗИДОВ СВИНЦА, СЕРЕБРА И ТАЛЛИЯ

Э.П. Суровой, Ю.А. Захаров, Л.Н. Бугерко, С.М. Сирик, Л.И. Шурыгина, С.В. Расматова

Методами масс-спектрометрии, спектрофотометрии и электронной микроскопии установлено, что предварительное облучение азидов свинца, серебра и таллия светом наряду с увеличением скорости фотолиза и фототока приводит к появлению новой длинноволновой области спектральной чувствительности. Определены константы скорости фотолиза азидов. В результате измерений контактной разности потенциалов, вольт-амперных характеристик, контактной фото-ЭДС, фототока установлено, что при фотолизе азидов формируются микрогетерогенные системы азид – металл (продукт фотолиза), темновые и фотопроцессы на границе раздела которых, определяют наблюдаемые изменения фоточувствительности азидов.

ВВЕДЕНИЕ

Исторически сложившаяся в фотохимии твердых неорганических систем обстановка характерна тем, что основная часть исследований процессов фотораспада и сопряженных с ними физических (в частности фотофизических) работ, направленных на выяснение механизма фотолиза, проведена на галогенидах серебра (традиционных объектах фотохимии), имеющих важное практическое применение [1]. Фотолиз же других соединений изучен недостаточно. Исследование фотохимического разложения и фотофизических процессов в неорганических солях различных типов представляется необходимым как для решения группы научных задач, в частности, выяснения степени общности механизмов и закономерностей фотолиза различных соединений, так и для решения практических задач, связанных с разработкой новых систем записи и хранения оптически переданной информации.

Среди разнообразных фоточувствительных соединений особое место занимают азиды тяжелых металлов (АТМ) [2, 3]. Относительно несложный состав и структура АТМ, высокая фоточувствительность, значительный внутренний фотоэффект, простой состав конечных продуктов фоторазложения (обычно металл и азот), не реагирующих друг с другом, делают АТМ удобными объектами исследований. Предпринятые небезуспешные попытки создания на основе некоторых АТМ фотографических материалов [4-6] дают основание полагать. что АТМ являются перспективными материалами для создания на их основе новых систем регистрации информации, обладающих, в частности, фотохимической чувствительностью при 4,4 К.

Подробное рассмотрение кинетических и спектральных закономерностей протекания реакций при глубоких степенях превращения азидов свинца, серебра и таллия позволило установить автокаталитическое и сенсибилизирующее влияние продуктов фотолиза [2, 7-13]. Однако, в связи с отсутствием в распоряжении авторов информации о качественном и количественном составе продуктов фотолиза азидов разного метода синтеза, данных по электрофизическим свойствам контактов азидов с продуктами их фотохимического разложения, а также результатов исследований темновых и фотопроцессов в искусственно приготовленных системах "азид - металл", предлагаемые в [2, 7, 10, 13] механизмы и схемы автокатализа нельзя считать установленными и серьезно согласованными с экспериментом. Более того, выполненные в нашей лаборатории исследования в этом направлении [11, 12, 14, 15] позволили установить ряд новых кинетических закономерностей на глубоких стадиях фотолиза азидов, которые в рамках моделей, излагаемых в работах [2, 7, 10, 13], не могут быть объяснены.

В настоящем сообщении приведены результаты цикла работ, направленного на изучение кинетических и спектральных закономерностей фотолиза в анионной и катионной подрешетках азидов свинца, серебра и таллия, идентификацию продуктов фотолиза азидов разных методов синтеза, изучение природы процессов в системах "азид – продукт фотолиза".

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Азиды свинца серебра и таллия синтезировали методом двухструйной кристаллизации, одновременно сливая водные 0,2 н растворы дважды перекристаллизованного

технического азида натрия и нитратов соответствующих металлов (марки х.ч.) при рН 3 и T = 293К в течение 1–2 с. Образцы для исследований готовили прессованием таблеток азидов массой 150 мг при давлении 1×10³ кг·см⁻², либо путем нанесения 150 мг навесок азидов на кварцевую пластинку в виде спиртовой суспензии, с последующей отгонкой спирта в вакууме. Измерения скорости фотолиза (V_Ф), фототока (i_Ф) и фото-ЭДС (U_Ф) образцов проводили в вакууме (1×10⁻⁵ Па). Источниками света служили ртутная (ДРТ-250) и ксеноновая (ДКсШ-1000) лампы. Для выделения требуемого участка спектра применяли монохроматор МСД-1 и светофильтров. Актинометрию набор источников света проводили с помощью радиационного термоэлемента РТ-0589. В VΦ качестве датчика при измерении использовали лампу РМО - 4С омегатронного масс-спектрометра ИПДО-1, настроенного на частоту регистрации азота [16]. Измерения іф и Uф проводили на установке, включающей электрометрический вольтметр В7-30, либо электрометр TR-1501 [14]. Спектры диффузного отражения (ДО) измеряли при давлении 101,3 кПа на спектрофотометре SPECORD-M40 с приставкой на отражение 8⁰d и в вакууме (1×10⁻⁴ Па) [17]. Контактную разность потенциалов (КРП) между азидами и электродом сравнения из платины измеряли, используя модифицированный метод Кельвина [18]. Топографию твердофазных продуктов фотолиза азида свинца изучали

методом угольных реплик на электронном микроскопе УЭМВ-1000.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На рисунке 1 на примере PbN₆(Ам) приведены типичные кинетические кривые V_Ф наблюдаемые при воздействии на азиды свинца, серебра и таллия (разного метода синтеза) света из области собственного поглощения азидов при температуре 293 К. На кинетических кривых V_Ф азидов можно выделить несколько участков. В полях интенсивного освещения (I>1·10¹⁴ квант см⁻²·с⁻¹) V_Ф, быстро возрастая до определенной величины, уменьшается (нестационарный участок I) и некоторое время остается неизменной (стационарный участок II), затем увеличивается (участок ускорения III) до постоянного значения (участок насыщения IV). V_ф, а также время реализации разных участков кинетических кривых зависят от способа синтеза препаратов, интенсивности падающего света, вида и времени предварительной обработки, температуры. Снижение интенсивности падаюшего света приводит к уменьшению V_ф. V_ф и i_ф (на разных участках кинетических кривых) в зависимости от интенсивности падающего света описываются выражениями вида: $V_{d} = k_1 I^{n1}$ и і_ф=k₂lⁿ² (таблица 1).

Таблица 1 Показатели п₁ и п₂ в уравнениях V_Ф = $k_1 l^{n1}$ и $i_{\Phi} = k_2 l^{n2}$ для I, II и III участков кинетических кривых V_Φ и i_{Φ}

Образец			II			
	n ₁	n ₂	n ₁	n ₂	n ₁	n ₂
PbN ₆ (Ам)	1,0÷2,0	0,9÷1,0	1,0÷1,3	0,5÷0,6	2,0	1,1
AgN ₃ (A)	1,9÷2,1	0,8÷1,0	1,0÷1,2	0,5÷0,6	2,0	1,0
TIN ₃ (A)	1,8÷2,0	0,9÷1,0	1,0÷1,1	0,5÷0,6	1,9	0,9

Таблица 2

Энергии активации фотолиза и фототока азидов для разных участков кинетических кривых

Препарат	Участок II		Участок III		
	E _a (V _ф), эВ	Е _а (і _ф), эВ	E _a (V _ф), эВ	E _a (і _ф), эВ	
PbN ₆ (Aδ)	0,1	0,13÷0,22	0,6÷0,8	0,26÷0,35	
PbN ₆ (Ам)	0,1	0,14÷0,21	1,2÷1,3	0,30÷0,40	
AgN ₃ (A)	0,1÷0,2	0,17÷0,22	0,5÷0,7	0,30÷0,35	
TIN ₃ (A)	0,1÷0,2	0,16÷0,21	0,6÷0,7	0,22÷0,26	

Различные виды обработок, которые приводят к частичному разложению азидов, в частности, прогрев в вакууме (1.10⁻⁵ Па) в интервале температур 333:413К, облучение,

старение образцов, обработка в восстановительной среде уменьшают или полностью устраняют максимум (I). Повторное (после прерывания света на I и II участках) освеще-

ние образцов не приводит к заметному изменению V_{Φ} на II, III и IV участках кинетических кривых. При этом V_{Φ} на участке I уменьшается (рис.1). После предварительного освещения образцов до IV участка V_{Φ} значительно увеличиваются. Более продолжительная обработка образцов (в течение 2-3 часов) светом из области собственного поглощения азидов при I=1·10¹⁵ квант·см⁻²·с⁻¹ приводит к снижению V_{Φ} .

Рис. 1. Кривые V_Ф PbN₆(Ам) до (1) и после прерывания света на I(2), II(3), IV(4) V(5) участках. λ = 365 нм, I = 2·10¹⁵ квант·см⁻²·с⁻¹

Рис. 2. Спектральное распределение V_Ф (1,5), i_{Φ} (2,3) и U_Φ (4) до (1,2) и после (3,4,5) облучения PbN₆(Aб). I=2·10¹⁵ квант·см⁻²·c⁻¹

В результате электронномикроскопических и спектрофотометрических исследований было установлено, что наблюдаемое понижение фоточувствительности азидов связано с затемнением поверхности образцов продуктами фотолиза и, как следствие, с уменьшением числа поглощенных азидами ПОЛЗУНОВСКИЙ ВЕСТНИК № 4 2004 квантов света. Хранение более 12 часов в вакууме (1·10⁻³ Па) предварительно облученных светом из области собственного поглощения азидов приводит к частичному восстановлению формы кинетических кривых V_ф.

После прекращения экспонирования на разных участках кинетических кривых V_Ф наблюдается участок постгазовыделения (рис.1). Видно, что кривые постгазовыделения состоят из двух участков - "быстрого" и "медленного". С увеличением интенсивности света увеличивается временной интервал "медленной" составляющей кривой постгазовыделения, а с понижением температуры время постгазовыделения сокращается за счет уменьшения временного интервала "медленной" составляющей.

Установлено, что независимо от времени предварительного экспонирования, интенсивности падающего света кривые постгазовыделения для азидов свинца, серебра, таллия построенные в координатах $lnC_{N2}=f(\tau)$ -линейны. В таблице 3 приведены константы скорости (k_2) процесса отвечающего за постпроцессы.

Таблица 3

Константы скорости, с					
Образец	Участок I, k ₂ ×10 ²	Участок II, k ₂ ×10 ²	Участок IV, k ₂ ×10 ³		
TIN ₃ (A)	2,16±0,11	1,60±0,08	2,70±0,14		
AgN ₃ (A)	1,20±0,05	1,28±0,05	1,30±0,05		
AgN ₃ (Б)	1,40±0,05	1,30±0,04	1,09±0,05		
PbN ₆ (Aб)	3,91±0,11	2,46±0,11	2,70±0,15		
PbN ₆ (Ам)	4,32±0,16	3,10±0,15	2,40±0,12		

В результате анализа кривых спектрального распределения V_{Φ} и i_{Φ} (рис. 2), построенных по стационарным значениям (участок II) кинетических кривых, установлено, что наблюдается корреляция между кривыми V_Ф и іф каждого из рассматриваемых азидов. Предварительная обработка образцов светом из области края собственного поглощения азидов в течение времени, соответствующего I и II участкам кинетических кривых V_Ф, не приводит к заметному изменению кривых спектрального распределения V_ф и i_ф. После предварительной световой обработки образцов до участка IV вид кривых спектрального распределения V_Ф и і_Ф существенно изменяется (рис. 2). Наряду с увеличением V_Ф и і_Ф в собственной области поглощения азидов на кривых спектрального распределения V_Ф и і_Ф появляются новые спектральные области, длинноволновые пороги которых простираются до λ_{AgN3} =1240 нм, $\lambda_{PbN6 (Am)}$ =600 нм, $\lambda_{PbN6 (A6)}$ =850 нм, λ_{TIN3} =720 нм.

Для выяснения причин, вызывающих наблюдаемые изменения кинетических кривых и кривых спектрального распределения V_{Φ} и i_{Φ} , были измерены и рассчитаны темновые вольтамперные характеристики, рассмотрены особенности формирования и характеристики U_{Φ} систем "азид - продукт фотолиза", а также проведены оценки некоторых энергетических параметров контактов и построены диаграммы энергетических зон.

Системы "азид – металл (продукт фотолиза)" проявляют выпрямляющие свойства (прямому направлению соответствует внешнее напряжение, приложенное в направлении противоположном КРП, т.е. плюс от источника подан на PbN₆ (Аб), AgN₃ (А), TIN₃ (А)). Контакт "PbN₆ (Аб), Pb" не проявляет выпрямляющих свойств. На рис. 2 приведены кривые спектрального распределения U_Ф систем PbN₆(Аб)- Pb. Установлено, что полярность U_Φ соответствует положительному со стороны PbN₆ (Аб), AgN₃ (А), TIN₃ (А) и отрицательному со стороны aзидов, а кривые спектрального распределения V_Φ.

Для идентификации твердофазного продукта фотолиза азидов свинца, серебра и таллия в вакууме 1.10⁻⁵ Па на разных стадиях его образования [19-24] воспользовались подходом, предложенным в [60].

Для обнаружения частиц металла в диэлектриках авторы [25] предложили сопоставить экспериментально наблюдаемую зависимость і_ф от частоты излучения с током фотоэмиссии на границе раздела "металл – диэлектрик". В соответствии с теорией [60] ток фотоэмиссии на границе металл-диэлектрик, вызываемый монохроматическим светом частоты $\omega > \omega_0$, где ω_0 - красная граница фотоэффекта, рассчитывали по формуле [60]:

I=A(ω- ω_0)²f(γ),

٦

$$f(\gamma) = \int_{0}^{1} \frac{2(1-x)dx}{1-\exp[-(\gamma x)^{\frac{1}{2}}]} = \begin{cases} \frac{1+8\gamma\exp(-\gamma^{\frac{1}{2}})+...,\gamma<<1,}{\frac{8}{15}\gamma^{\frac{1}{2}}+\frac{1}{2}+\frac{2}{9}\gamma^{\frac{1}{2}}+...,\gamma>>1. \end{cases}$$

где А - константа, определяемая свойствами металла и границы раздела; х - переменная интегрирования; $\gamma = (\omega - \omega_o)/E_a$ - характеристический параметр; h - постоянная Планка; $E_a=33,5\times\epsilon^{-2}m/m_o$ - характеристическая энергия; m_o - масса электрона, m - эффективная масса; ϵ - диэлектрическая проницаемость среды.

Красную границу фотоэффекта для каждого из предварительно экспонированных азидов установили путем спрямления длинноволнового участка экспериментальных кривых спектрального распределения іф в координатах $I^{1/2} = f(h\omega)$. Аппроксимируя полученную прямую до пересечения с осью абсцисс, определили значения ω_0 для каждого из азидов. Для препаратов AgN₃ (A), TIN₃ (A), PbN_6 (AM), PbN_6 (AG), подвергнутых предварительной обработке светом из области собственного поглощения азидов (до IV участка кинетических кривых V_Ф), красные границы фотоэффекта составляют 1,0 эВ (1236 нм), 1,7эВ (720 нм), 2,05эВ (604 нм), 1,45эВ (854 нм) соответственно.

В результате сопоставления расчетных значений тока фотоэмиссии на границе раздела каждой из систем "AgN₃ (A) – Ag", "PbN₆ (Am) – Pb", "PbN₆ (Aб) – Pb", "TIN₃ (\check{A}) - TI" \check{n} зависимостей іф от энергии падающих квантов света для образцов предварительно обработанных светом из области собственного поглощения было установлено, что расчетные значения тока фотоэмиссии на границе систем "азид - металл (продукт фотолиза)" и экспериментально наблюдаемые значения іф практически совпадают. Этот факт, а также результаты измерений КРП (табл. 5, 6) [26] свидетельствуют о том, что твердофазными продуктами фотолиза азидов свинца, серебра и таллия являются свинец, серебро и таллий соответственно.

Топографию частиц фотолитического металла изучали при помощи метода угольных реплик с извлечением на просвечивающем микроскопе УЭМВ-1000 после экспонирования образцов светом из области собственного поглощения азидов в интервале интенсивностей падающего света от 2·10¹³ до 8.10¹⁵ квант.см⁻².с⁻¹. Было установлено, что при временах облучения образцов, соответствующих участкам I и II кривых V_Ф образуются частицы фотолитического металла сферической формы. При экспонировании азидов до участка ускорения III частицы фотолитического металла достигают размера 0,1-0,2 мкм и приобретают огранку. При временах освещения, соответствующих временам достижения участка (IV), поверхность образцов практически полностью покрывается фотолитическим металлом. Установлено, что количество частиц фотолитического металла и их размеры увеличиваются по мере роста интенсивности падающего света и времени освещения, соответственно.

ФОТОЛИЗ АЗИДОВ СВИНЦА, СЕРЕБРА И ТАЛЛИЯ

При малых временах экспонирования (соответствующих временам участков I, II кинетических кривых скорости фотолиза и фототока) на кривых распределения частиц по размерам можно выделить максимумы, свидетельствующие о преимущественном формировании частиц определенных размеров. В таблице 7 приведены средние размеры частиц фотолитического металла, которые формируются на поверхности азидов свинца, серебра и таллия (разных методов синтеза) при облучении их светом λ =365 нм в течение времени, соответствующего I и II участкам кинетических кривых скорости фотолиза и фототока.

Таблица 5

КРП (В) между азидами свинца, серебра, таллия и относительным платиновым электродом

Материал	AgN₃ (A)	AgN₃ (Б,В)	РbN ₆ (Аб)	РbN ₆ (Ам)	РbN ₆ (Б,В)	TIN ₃ (A)
*	+0,40	+0,41	+0,58	+0,57	+0,55	+1,10
**	+0,41	+0,41	+0,59	+0,58	+0,56	+1,10

* После предварительного термолиза при Т = 550 К в течение 180 мин.

** После предварительного фотолиза при λ = 365нм , I = 1.0 ·10¹⁴ квант см⁻² с⁻¹ в течение 90 мин.

Таблица 6

КРП между металлами, азидами свинца, серебра, таллия и относительным платиновым электродом. Р. Па.

Материал	КРП (Т=293 К), В				
marophan	P=1.10 ⁵	P=1.10 ⁻⁵	P=1.10 ⁻⁵ *		
Таллий	+1,12	+1,11	+1,10		
Серебро	+0,40	+0,40	+0,41		
Свинец	+0,58	+0,59	+0,59		
AgN_3 (A)	+0,54	+0,52	+0,30		
AgN ₃ (Б,В)	+0,56	+0,46	0		
PbN ₆ (Ам)	+0,28	+0,46	+1,21		
PbN ₆ (Аб)	-0,34	-0,21	+0,21		
PbN ₆ (Б,В)	+0,29	+0,49	+1,20		
TIN_3 (A)	+0,70	+0,50	+0,10		

* После предварительного прогрева.

Таблица 7

Размер частиц фотолитического металла в зависимости от интенсивности падающего света (I)

I, квант⋅см ⁻² ⋅с ⁻¹	PbN ₆ (Ам)	PbN ₆ (Aб)	РbN ₆ (Б, В)
9 10 ¹⁵ . 1 10 ¹⁴	30-40	30-40	30-40
0.10 ÷ 4.10		90-110	90-110
$1.10^{14} \div 2.10^{13}$	30-40	90-110	80-110
I, квант см ⁻² с ⁻¹	AgN ₃ (A)	AgN ₃ (Б, В)	TIN ₃ (A)
9 10 ¹⁵ , 1 10 ¹⁴	30-40	30-40	40-50
0·10 ÷ 4·10	100-120	100-120	100-120
$1.10^{14} \div 2.10^{13}$	100-120	100-120	100-120

Дальнейшее увеличение времени облучения наряду с накоплением и некоторым укрупнением частиц фотолитического металла приводит к тому, что распределение частиц по размерам становится неоднородным.

Длинноволновый край диффузного отражения (ДО) азидов свинца, серебра и тал-

лия находится в области λ ≤ 410 нм. Продолжительное хранение образцов, обработка светом из области края собственного поглошения азидов в интервале интенсивностей падающего света 8,56·10¹³÷3,17·10¹⁵ квант см ²·с⁻¹, наряду с отсутствием заметных эффектов в собственной области поглощения азидов, приводит к существенному изменению вида спектральных кривых ДО в длинноволновой области спектра (рис. 3). При малых (до 30 с) временах обработки AgN_3 (A) и TIN_3 (A) CBETOM λ = 365 HM I = 8,56.10¹³÷2,4.10¹⁴ квант см⁻² с⁻¹ (для AgN₃ (A)) и I = 8,56·10¹³÷3,17·10¹⁵ квант см⁻²·с⁻¹ (для TIN₃ (А)) наблюдается увеличение ДО образцов в длинноволновой области спектра. По мере дальнейшего увеличения продолжительности световой обработки наряду с уменьшением отражательной способности азидов свинца, серебра и таллия на спектральных кривых ДО наблюдаются широкие полосы с максимумами при 450 нм и 600 нм для AgN₃ (A), при 450 нм и 600 нм для TIN₃ (A), при 440 нм для PbN₆ (Ам).

Для выяснения причин, вызывающих наблюдаемые изменения спектральных кривых ДО в результате световых обработок образцов рассчитали площади (S) под кривыми $\Delta R\%$ от λ , измеренными при разных временах облучения и интенсивностях падающего света, и построили зависимости в координатах S = f($\tau_{oбл}$). По кинетическим кривым скорости фотолиза, рассчитали количество металла, образуемого в процессе фотолиза (Сме) и сопоставили с зависимостями S = $f(\tau_{obn})$. На рис. 4 на примере AqN₃ (A) представлены результаты сопоставления площадей, соответствующих изменению спектральных кривых ДО образцов при различных временах и интенсивностях экспонирования, с кинетическими кривыми образования фотолитического металла. Наблюдаемые совпадения кривых, а также результаты изложенные выше, свидетельствуют о том, что изменения в спектрах ДО образцов PbN_6 (Ам), AgN_3 (A), TIN_3 (А) в результате воздействия света связаны с образованием фотолитического свинца, серебра и таллия (соответственно), а широкие полосы на спектральных кривых ДО (рис. 4) с образованием частиц со средним размером d ≈ 35 - 40 A^o и d ≈ 100 –120 A^o (для AgN_3 (A)), d ≈ 30 – 40 А° (для PbN₆ (Ам)), d ≈ 40 – 50 А° и d ≈ 100 – 120 А° (для TIN₃ (А)). В таблице 8 представлены результаты определения констант V_Ф азидов свинца, серебра и таллия, которые оценивались по тангенсу наклона зависимостей InS от (τ) (k_{1ДО}) и InC_{Me} от (τ) (k_{1ф}). Видно, что увеличение интенсивности падающего света не приводит к существенному изменению констант V_Ф азидов. Для выяснения лимитирующей стадии процесса фотолиза азидов свинца, серебра, таллия оценили время, в течение которого подвижные ионы Ag⁺, TI⁺ и анионная вакансия нейтрализуют локализованный электрон или диффундируют к нейтральному центру.

Рис. 3. Изменение отражательной способности AgN₃(A₁) в зависимости от времени облучения светом λ =365 нм и I=3,17·10¹⁵, квант·см⁻²·с⁻¹

Время релаксации по механизму дрейфа ионов Ag⁺ в кулоновском поле к локализован-

ному электрону равно максвелловскому времени релаксации [3]: $\tau_i = \epsilon/4\pi\sigma$

где: ϵ - диэлектрическая проницаемость, σ - удельная проводимость.

Среднее время релаксации при диффузионном протекании процесса может быть оценено [27], как: $\tau_n = e^2/\sigma akT$,

где: е - заряд электрона; а - постоянная решетки; к - постоянная Больцмана; Т - температура, 293 К. В таблице 11 приведены рассчитанные значения времен релаксации и констант скорости.

Рис. 4. Сопоставление количества серебра (N) (×) - продукта фотолиза AgN_3 (A₁) и площади S (•), соответствующей изменению отражательной способности в зависимости от времени облучения светом λ =365нм при I,квант/(см²×с): 1 – 8,56×10¹³; 2 – 2,42×10¹⁴; 3 - 8×10¹⁴; 4 – 2,42×10¹⁵; 5 – 3,17×10¹⁵

Таблица 8

Константы скорости фотолиза азидов рассчитанные по кинетическим кривым V $_{\Phi}$ ($k_{1\Phi}$) и по спектрам ДО (k_{1DO})

AgN ₃ (A)						
I, квант.см ⁻¹ .с ⁻¹	k _{1φ} ×10 ² c⁻¹	k _{1ДО} ×10 ² с⁻¹				
2,80·10 ¹⁴	1,10±0,15	1,20±0,10				
1,60·10 ¹⁵	1,90±0,24	2,00±0,20				
2,60·10 ¹⁵	3,30±0,20	3,50±0,30				
3,17·10 ¹⁵	4,50±0,35	4,80±0,50				
	TIN ₃ (A)	•				
I, квант см ⁻¹ с ⁻¹	k _{1φ} ×10 ² ,c ⁻¹	k _{1ДО} ×10 ² , с ⁻¹				
8,56·10 ¹⁴	2,80±0,25	2,70±0,28				
1,60·10 ¹⁵	4,60±0,35	4,50±0,35				
3,17·10 ¹⁵	6,20±0,45	6,00±0,45				
6,34·10 ¹⁵	6,50±0,50	6,40±0,50				
1,27·10 ¹⁶	6,80±0,55	6,50±0,50				
	РbN ₆ (Ам)					
І,квант⋅см ⁻¹ ⋅с ⁻¹	k _{1¢} ×10 ² c ⁻¹	k _{1ДО} ×10 ² , с ⁻¹				
6,00·10 ¹³	1,56±0,12	1,36±0,10				
1,80·10 ¹⁴	2,00±0,15	1,90±0,15				
5,00·10 ¹⁴	2,30±0,20	2,10±0,20				
1,40·10 ¹⁴	5,50±0,35	5,40±0,40				
2,00·10 ¹⁵	5,70±0,40	5,60±0,45				

Таблица 11 Времена релаксации τ_i и τ_n, и значения констант скорости k_i и k_n

Препарат	τ _i ,C	τ _n ,C	k _i , c⁻¹	k _n , c⁻¹
AgN ₃ (A)	0,35	114	2,85	8,80·10 ⁻³
РbN ₆ (Ам,Аб)	0,40	80	2,50	1,25·10 ⁻²
TIN ₃ (A)	0,32	66	3,10	1,51·10 ⁻²

Приведенные в таблице 11 приближенные оценки констант скорости, а также удовлетворительное совпадение констант V_{Φ} , констант постгазовыделения для каждого из рассмотренных азидов с k_n дают основание предположить, что лимитирующей стадией процесса фотолиза азидов свинца, серебра и таллия является диффузия ионов серебра, таллия и анионных вакансий к нейтральному центру.

На основании анализа литературных данных [2, 7, 11, 12, 21-24], а также полученных в настоящей работе результатов можно заключить, что ускорение процесса фотолиза и сенсибилизация фоточувствительности связаны с образованием и накоплением при фотохимическом разложении азидов свинца, серебра и таллия – металла, как это было показано для качественно подобного эффекта в азидах щелочных и щелочноземельных металлов.

Предлагаемые в [7,13] модели для объяснения автокаталитической кинетики фотолиза азида бария, а также введение (безотносительно к рассмотрению кинетики на глубоких стадиях фотолиза) Д. Янгом [2] в качестве возможной схемы автокатализа (при активном участии серебра – продукта фотолиза AgN₃) оказываются неприемлемыми для объяснения обсуждаемых явлений при фотораспаде азидов свинца, серебра и таллия. Действительно, общим для схем [7, 10, 13] является предположение о термической (не фотохимической) природе элементарных стадий 2 рис. 5 [2, 7].

В результате протекания стадии 2 образуется (термически) радикал N_3° , связанный с ядром металла. Вместе с тем, схемы [7] предполагают фотохимическое образование экситона $N_3^{\cdot *}$ (либо второго N_3°) – в результате поглощения светового кванта, способного вызвать процесс 1 (рис. 5).

Конечные продукты образуются при взаимодействии "термического" и "фотохимического" N_3° (N_3^{-*})

 $Ag_{n}N_{3}^{o} + N_{3}^{o}(N_{3}^{*}) \rightarrow Ag_{n}2N_{3}^{*} + 3N_{2}$

Э.П.СУРОВОЙ, Ю.А. ЗАХАРОВ, Л.Н. БУГЕРКО, С.М. СИРИК, Л.И. ШУРЫГИНА, С.В. РАСМАТОВА.

Перенесение на азиды тяжелых металлов этих схем фотолиза (находящих подтверждение при изучении разложения азидов щелочных и щелочноземельных металлов) приводит к противоречию с установленными в [11, 14] электрон-ионными процессами, с учетом сформированных в [8, 9, 28] представлений о механизмах фотохимического разложения азидов тяжелых металлов.

Рис. 5. Диаграммы энергетических зон систем: a) $TIN_3(A)$ - металл, AgN_3 (A, B) – металл, $PbN_6(AG)$ – металл; б) $PbN_6(Am)$ – металл

Полученные в настоящей работе и ранее [8, 11, 21-24, 29] данные свидетельствуют:

во-первых, что основными продуктами фотолиза азидов в условиях вакуума являются металл и газообразный азот, которые образуются в основном на поверхности азидов;

во-вторых, о контактной фотоэлектрической природе наблюдаемых изменений кинетических кривых и кривых спектрального распределения V_Ф и і_Ф.

Это, прежде всего, следует из установленных экспериментальных фактов [21-24,29] в частности:

1) корреляции кинетических кривых V_{Φ} и $i_{\Phi},$ а также кривых спектрального распределения $V_{\Phi},\,i_{\Phi}$ и $U_{\Phi};$

2) формирование U_{Φ} для систем "PbN₆ (Аб) - Pb", "AgN₃ (A₁) - Ag", "TIN₃ (A) - TI" и PbN₆ (Ам) - Pb" прямо свидетельствует о разделении "неравновесных" носителей заряда;

3) наличия эффектов "выпрямления" на вольтамперных характеристиках систем "азид – металл (продукт фотолиза)".

Фотохимические проявления фотоэлектрических процессов в таких системах могут быть вызваны перераспределением под действием контактного поля генерированных светом носителей заряда [11, 30]. Эти процессы приведут к существенным изменениям условий протекания фотолиза у предварительно фоторазложенных препаратов азидов по сравнению с фотораспадом свежеприготовленных. Согласно существующим в настоящее время представлениям [8, 11, 28] процесс фотолиза под действием света из области поглощения азидов свинца, серебра и таллия идет в несколько стадий:

1) генерация электрон - дырочных пар (рис. 5, переход 1):

 $N_3 \rightarrow p + e;$

2) так как квантовый выход фотолиза на начальном участке составляет 0,002 ÷ 0,005 [37-39], часть "неравновесных" носителей заряда рекомбинирует (рис. 5):

 $T^+ + e \rightarrow T^o + p \rightarrow T^+$,

где Т⁺ - центр рекомбинации;

3) при малых временах экспонирования (участок I) значения V_{ϕ} и i_{ϕ} , в основном, определяются наличием у азидов поверхностных электронных состояний (ПЭС) [8, 9, 26]. Пары носителей генерированные в области пространственного заряда азидов перераспределяются с переходом электронов (для азидов серебра, таллия и свинца (Аб))

 $T_n^+ + e \rightarrow T_n^o$ и дырок (для PbN6 (Ам)) $T_n^- + p \rightarrow T_n^o$

на уровни ПЭС, которые по нашему мнению являются центрами образования частиц соответствующего металла. В процессе роста частиц фотолитического металла формируются микрогетерогенные системы азид – металл (продукт фотолиза) [21-24].

При создании микрогетерогенных систем идет процесс обмена равновесными носителями зарядов до тех пор, пока на контакте не установится термодинамическое равновесие и не сформируется КРП. Согласно установленным соотношениям между контактными потенциалами в системах "PbN₆ (Аб) - Pb", "AgN₃ (A₁) - Ag" и "TIN₃ (A) - TI" (табл. 5,6) [26] равновесные электроны переходят из свинца, серебра и таллия в приконтактную область PbN_6 (Аб), AgN_3 (A₁) и TIN_3 (A), а для систем "PbN₆ (Ам) - Pb" электроны переходят PbN₆ (Ам) в свинец. Установленные направления искривления энергетических зон у азидов свинца, серебра и таллия в контакте с металлами (продуктами их фотолиза) хорошо согласуются с ожидаемыми из соотношений величин контактных потенциалов (табл. 5,6) контактирующих партнеров.

Согласно существующим представлениям [30], процессами ответственными за формирование фотоЭДС при освещении систем "азид - металл" светом из области собственного поглощения азидов могут быть следующие:

а) перераспределение генерированных в области пространственного заряда азидов "неравновесных" электрон – дырочных пар; при этом, для систем "PbN₆ (Аб) - Pb", "AgN₃ (A₁) - Ag" и "TIN₃ (A) - TI" направление контактного поля таково, что фотоэлектроны переходят в металл, а дырки дрейфуют вглубь азидов. В то время как для систем "PbN₆ (Aм) - Pb" контактное поле втягивает электроны вглубь PbN₆ (Aм), а дырки – к контакту;

б) фотоэмиссия электронов из свинца в зону проводимости PbN₆ (Aм) и дырок из свинца, серебра и таллия в валентную зону PbN₆ (Aб), AgN₃ (A₁) и TIN₃ (A) (соответственно) с последующим дрейфом носителей заряда в поле контактной разности потенциалов. Одновременно с отмеченными процессами, которые приводят к формированию фотоЭДС и к смещению энергетических уровней у азидов свинца, серебра и таллия, имеют место потоки равновесных носителей заряда, уравновешивающие (в стационарном состоянии) токи "неравновесных" электронов и дырок. Рост частиц фотолитического металла для азидов можно представить как захват электронов растущей частицей

$$e + Ag_m^{+} \rightarrow Ag_m^{\circ}, \\ e + TI_m^{+} \rightarrow TI_m^{\circ}, \\ e + Pb_m^{+} \rightarrow Pb_m^{\circ}.$$

Подвижный ион Ag⁺ в азиде серебра или TI⁺ в азиде таллия (они разупорядочены по Френкелю) закрепляется на нейтральном центре Ag^o_m (TI^o_m):

$$\begin{array}{l} \mathsf{Ag_m}^{o} + \mathsf{Ag}^{+} \to \mathsf{Ag_{m+1}}^{+}, \\ \mathsf{TI_m}^{o} + \mathsf{TI}^{+} \to \mathsf{TI_{m+1}}^{+}. \end{array}$$

Подвижная анионная вакансия V_a (азид свинца разупорядочен по Шоттки [71,72]) закрепляется на нейтральном центре Pb_m°:

$$\begin{array}{l} \mathsf{Pb_m}^\circ + \mathsf{V_a} \to [\mathsf{Pb_m}^\circ \cdot \mathsf{V_a}],\\ [\mathsf{Pb_m}^\circ \cdot \mathsf{V_a}] + e \ [\mathsf{Pb_m}^\circ \cdot \mathsf{V_a} \cdot e],\\ [\mathsf{Pb_m}^\circ \cdot \mathsf{V_a} \cdot e] + \mathsf{V_a} \to \mathsf{Pb_{m+1}}. \end{array}$$

Действительно, для всех рассматриваемых систем "азид – металл (продукт фотолиза)" в результате перехода генерированных светом из области собственного поглощения азидов "неравновесных" электронов и дырок в поле контактной разности потенциалов образуются нейтральные центры Ag_m°, Tl_m° и Pb_m°, которые в процессе фотолиза принимают участие в реакциях, обеспечивающих увеличение размера частиц фотолитического металла. Кроме того, для систем "PbN₆ (Am) – Pb", "неравновесные" электроны выталкиваются полем КРП в объем PbN₆ (Am), где могут принимать участие в образовании, росте и дальнейшем размножении частиц свинца:

 $e + V_a \leftrightarrow V_a e + V_a \leftrightarrow V_a e V_a + e \leftrightarrow (V_a e)_2$ $Pb^0).$

В результате формируются новые металлические частицы и, как следствие, новые микрогетерогенные системы "PbN₆ (Ам) - Pb"

 $(V_a \cdot e)_2 + V_a \rightarrow \dots \rightarrow (V_a \cdot e)_{2m} (Pb^o)_m.$

В результате исследования топографии частиц фотолитического свинца, установлено, что в процессе фотолиза PbN₆ (Аб) и PbN₆ (Ам) в одинаковых условиях (λ = 365 нм, I = 2.10^{15} квант см⁻² с⁻¹, $\tau \approx 1$ мин.) размер частиц фотолитического свинца на поверхности PbN_6 (Ам) меньше, чем у PbN_6 (Аб), а число частиц у PbN₆ (Ам) заметно больше, чем у PbN₆ (Аб). Размножение частиц свинца при фотолизе PbN₆ (Ам) приведет к более резкому увеличению числа микрогетерогенных систем "PbN₆ (Ам) - Pb". В итоге, будет и более резко возрастать и концентрация "неравновесных" дырок в области пространственного заряда PbN₆ (Ам). Результирующее увеличение концентрации дырок приведет к возрастанию і_ф, а также V_ф по принимаемым для

фотолиза азидов тяжелых металлов реакциям:

 $p + V_{\kappa} \rightarrow V_{\kappa} \, p + p \rightarrow p \cdot V_{\kappa} \, p \rightarrow 3N_2 + 2V_a + V_{\kappa}.$

где V_а и V_к – анионная и катионная вакансии.

1. При освещении систем "азид – металл (продукт фотолиза)" светом из длинноволновой области спектра имеет место фотоэмиссия дырок из свинца, серебра и таллия (для систем "PbN₆ (Aб) - Pb", "AgN₃ (A₁) - Ag", "TIN₃ (A) - TI" в валентную зону азидов), либо электронов из свинца в зону проводимости PbN₆ (Aм) (для систем "PbN₆ (Aм) - Pb") (рис. 5, переход

2. Фотоэмиссия носителей заряда приводит к появлению фотолиза, фототока и фотоЭДС у предварительно фоторазложенных препаратов в длинноволновой области спектра. Обнаруженные закономерности изменения фотолитическим металлом фоточувствительности азидов свинца, серебра и таллия (разного метода синтеза) согласуются с изложенным. Действительно, для гетеросистем "PbN₆ (Ам) - Pb" формируется отрицательный, а для систем "PbN₆ (Аб) - Pb", "AgN₃ (A₁) - Ag" и "TIN₃ (A) - TI" – положительные потенциалы фотоЭДС со стороны азидов свинца, серебра и таллия (рис. 5). Энергетические положения длинноволновых порогов на кривых спектрального распределения V_{Φ} , i_{Φ} и U_{Φ} для систем "азид – металл (продукт фотолиза)" удовлетворительно совпадают с величинами энергетических барьеров для фотоэмиссии дырок из фотолитического металла в азиды (для систем "PbN₆ (Аб) - Pb", "AgN₃ (A₁) - Ag" и "TIN₃ (A) - TI") и электронов (для систем "PbN₆(Ам)-Pb") из металла в азид свинца (рис. 5). Энергия активации фотолиза систем "азид-металл (продукт фотолиза)" в длинноволновых областях спектра удовлетворительно совпадают с энергией активации фотолиза азидов на III участке кинетических кривых V_Ф и і_ф (табл. 2) и энергией активации ионной проводимости азидов [8,31,32] и отличается на величину энергетического порога для переходов электронов из валентной зоны PbN₆ (Ам) в свинец (рис. 5).

СПИСОК ЛИТЕРАТУРЫ

1. Миз К., Джеймс Т. Теория фотографического процесса. Л.: Химия, 1973., с. 576.

2. Янг Д. Кинетика разложения твердых веществ. М.: Мир, 1969., с. 264.

3. Боуден Ф., Иоффе А. Быстрые реакции в твердых веществах. М.: «Иностранная литература», 1962., с. 243.

4. Murray R. D., Robbilard J. J. Field controlled photodecomposition of certain metallic azides and its potential application of photography // I SPSE Symposium on Uncombational Photographic System. – 1964. – P. 61-62.

5. Robbilard J. J. Possible Use of Certain Metallic Azides for the Development of Dry Photographic Process // J. Photog. Science. – 1971. – Vol. 19. – P. 25-37.

6. Tomoda J. Sensitiv. materials // Bull. Soc. Scient. Phot. Japan. – 1965. – Vol. 15. – P. 30-32.

7. Jacobs R. W. M., Tompkins F. S., Verneker V. R. Pai. The photochemical decomposition of barium azide // J. Phys. Chem. – 1962. – Vol. 66. – P. 1113-1118.

8. Захаров Ю.А. Электронно-ионные процессы при термическом и фотохимическом разложении некоторых твердых неорганических соединений: Дисс. ... д-ра хим. наук. Томск: ТГУ, 1975. 481 с.

9. Гаврищенко Ю.В. Фотолиз азидов тяжелых металлов и оптическая сенсибилизация этого процесса органическими красителями: Дисс. ... канд. хим. наук. Томск: ТГУ, 1969. 135 с.

10. Verneker P. V. R., Forsyth A.C. Photodecomposition of α -PbN₆ in the Solid State // J. Phys. Chem. – 1967. – Vol. 72, № 12. – P.3736-3741.

11. Суровой Э.П. Катализ металлами и полупроводниками процесса фотолиза азидов свинца и серебра: Автореф. дис. ... канд. хим. наук. Минск: БГУ, 1977. – 22 с.

12. Захаров Ю.А., Абакумов Е.П., Суровой Э.П. Сенсибилизация фотолиза азида серебра // Изв. ВУЗов. Химия и хим. технология. – Иваново, 1973. 10 с. – Деп. в ВИНИТИ 28.09.73. № 6848-73.

13. Verneker V. R. Pai. Photodecomposition of Solid Metal Azides // J. Phys. Chem. – 1968. – Vol. 72, No 5. – P. 1733-1736.

14.Захаров Ю. А., Суровой Э. П., Абакумов Е. П. Закономерности и схемы фотолиза азидов свинца и серебра на глубоких стадиях превращения // Томск. политехн. ин-т. – Томск, 1975. – 20 с. – Деп. в ВИНИТИ 09.01.76, № 61-76.

15. Захаров Ю. А., Абакумов Е. П., Суровой Э. П. Фотолиз азидов свинца, серебра и некоторых систем на их основе // Изв. ТПИ. – 1970, № 251. – С. 373-382.

16. Суровой Э.П., Бугерко Л.Н. Термостимулированное газовыделение из систем азид серебра - металл // Химическая физика - 2002.- Т. 21, № 7.- С. 74-78.

17. Суровой Э.П., Бугерко Л.Н., Захаров Ю.А., Расматова С.В. Закономерности формирования твердофазного продукта фотолиза гетеросистем азид свинца - металл // Материаловедение - 2002.-№ 9.- С. 27-33.

18. Суровой Э.П., Сирик С. М., Захаров Ю.А., Бугерко Л. Н. Фотолиз гетеросистем азид серебра – оксид меди (1) // Журн. научн. и прикл. фотогр. и кинематогр. - 2002. -Т. 47, № 5. - С. 19-27.

19. Шурыгина Л.И. Фотолиз азида таллия и гетеросистем на его основе: Автореф. дис. ... канд. хим. наук. Кемерово: КемГУ, 2000. 20 с.

20. Суровой Э. П., Сирик С. М., Бугерко Л. Н. Определение количественных характеристик газового потока методом полного разложения // Кемеровский гос. ун-т. – Кемерово. – 1996. – 15 с. – Деп. в ВИНИТИ 24.05.96, № 1677-В96.

21. Суровой Э.П., Сирик С.М., Бугерко Л.Н. Катализ фоторазложения азида серебра продуктами реакции // Химическая физика.- 1999.- Т. 18, № 2.- С. 44-46.

22. Суровой Э.П., Захаров Ю.А., Бугерко Л.Н., Шурыгина Л.И. Автокатализ фотолиза азида таллия // Химия высоких энергий. -1999.- Т. 33, № 5.-С. 387-390.

23. Суровой Э.П., Захаров Ю.А., Бугерко Л.Н., Сирик С.М., Шурыгина Л.И., Расматова С.В. Формирование под действием света гетеросистем "азид свинца - свинец" // Журн. научн. и прикл. фотогр. и кинематогр. - 2001. -Т. 46, № 3. - С. 1-9.

24. Суровой Э.П., Захаров Ю.А. Катализ металлами – продуктами разложения процесса фотолиза азидов свинца и серебра.// Вопросы кинетики и катализа. Иваново. 1978.-с. 59-62.

25. Бродский А.М., Гуревич Ю.Я. Теория электронной эмиссии из металлов. М.: Наука, 1973, с. 256.

26. Суровой Э.П., Захаров Ю.А., Бугерко Л.Н. Определение работы выхода электрона из

азида серебра, свинца, таллия // Неорганические материалы. 1996. - Т. 32, № 2. - С. 162-164.

27. Мейкляр П.В. Физические процессы при образовании скрытого фотографического изображения. М.: Наука, 1972., с. 399.

28. Колпаков О.Л. Кинетические особенности фото - и радиационных процессов в системах с ростом центров рекомбинации: Автореф. дис. ... канд. физ.-мат. наук. Кемерово: КемГУ, 1990. 22 с.

29. Сирик С.М. Фотолиз азида серебра и гетеросистем «азид – металл», «азид – полупроводник»: Автореф. дис. ...канд. хим. наук. Кемерово: КемГУ, 1999. 25 с.

30. Милнс А., Фойхт Д. Гетеропереходы и переходы металл-полупроводник. М.: Мир, 1975. С. 432.

31. Захаров Ю.А., Гасьмаев В.К., Колесников Л.В. О механизме процесса ядрообразования при термическом разложении азидов серебра // Журнал физической химии. – 1976. – Т. 50, № 7. – С. 1669-1673.

32. Захаров Ю.А., Баклыков С.П. Процессы возбуждения и переноса электронов в азиде свинца // Неорганические материалы. – 1979, № 12. – С. 2146-2152.