КАТАЛИЗ ОКИСЛЕНИЯ АМОРФНОГО КРАСНОГО ФОСФОРА ИОНАМИ МЕДИ И ЖЕЛЕЗА

А.В. Домин, А.В. Ильиных, С.В. Кабышев

В настоящей работе изучен характер адсорбции ионов меди и железа из сернокислых растворов на поверхность аморфного красного фосфора, а также каталитическое действие этих ионов в окислительных процессах красного фосфора кислородом и парами воды и в растворах азотной кислоты. Предложены механизмы соответствующих процессов.

ВВЕДЕНИЕ

В последние годы красный фосфор, кроме традиционного применения в спичечной промышленности, используется в синтезе материалов для микроэлектроники [1], в качестве антипиренового наполнителя пластмасс [2], компонента пиротехнических составов, в органическом синтезе. В зависимости от характера использования требуется красный фосфор, обладающий различной активностью.

Для пиротехнических изделий необходим красный фосфор, не склонный к окислению, а для органического синтеза необходим красный фосфор, обладающий высокой реакционной способностью [3].

К настоящему времени достигнут существенный прогресс в понимании особенностей микроструктуры и дефектности аморфного красного фосфора, а также установлен ряд отличий его свойств от свойств кристаллических модификаций [5]. В то же время изучению химических свойств красного фосфора и их связи с микроструктурой не было уделено достаточного внимания.

В работе [3] предложен механизм окисления аморфного красного фосфора в отсутствии катализаторов, учитывающий наличие в аморфных веществах пар разнесенных заряженных дефектов, образующихся при взаимодействии оборванных связей с неподеленной парой электронов соседнего атома. В красном фосфоре это дефекты P_2 и P_4 .

Известно, что скорость окисления аморфного красного фосфора кислородом и парами воды увеличивается в присутствии солей меди и железа [6], однако механизм катализа и основные кинетические закономерности процесса до настоящего времени не изучены.

В настоящей работе изучен характер адсорбции ионов Cu^{2^+} и Fe^{3^+} на аморфном красном фосфоре, а также их влияние на скорость его окисления кислородом и парами воды и растворения в азотной кислоте.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Адсорбция Cu^{2+} и Fe^{3+} осуществлялась из водных сернокислых растворов. Концентрация растворов по катиону изменялась в пределах 0,01-0,1 моль/л. Количество сорбированных ионов определялось по изменению оптической плотности раствора до и после адсорбции при длине волны 800 нм для меди и 420 нм для железа.

В экспериментах использовался полидисперсный препарат со средней удельной поверхностью — $0.4~{\rm M}^2/{\rm r}.$

Окисление аморфного красного фосфора в 17% азотной кислоте проводилось при 80°С в присутствии сульфатов меди и железа в вышеуказанном диапазоне концентраций. Определялось визуально время полного растворения навески фосфора.

Окисление красного фосфора проводилось, в эксикаторе емкостью 1,8 литра, на решетку которого помещались бюксы с навеской фосфора массой 1 г.

Для создания атмосферы с фиксированной влажностью наливали на дно эксикатора 200 мл серной кислоты соответствующей концентрации. Предварительно красный фосфор либо отмывался от ранее образовавшихся кислот, либо в течение одного часа выдерживался в растворе солей меди или железа, а затем быстро высушивался в вакуумном шкафу. Эксикаторы помещали в термостатируемый с точностью ±1,5°C сушильный шкаф.

Через определенные промежутки времени навески промывалось 100 мл дистиллированной воды на фильтре Шотта, а фильтрат анализировался на содержание образовавшихся фосфорных кислот ванадато-молибдатным методом [7].

Для удобства расчетов градировочные зависимости во всех методиках строились в координатах: оптическая плотность раствора, содержание фосфора соответствующей степени окисления, т.е. в виде соответствующей кислоты.

ПОЛЗУНОВСКИЙ ВЕСТНИК № 4 2004

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Сорбция ионов Cu^{2+} и Fe^{3+} из 0,03 молярного раствора (рис. 1) показала, что основная масса сорбируемого вещества поглощается в течение 1 часа. Поэтому влияние концентрации ионов меди и железа на количество сорбируемого вещества исследовалось в данном промежутке времени.

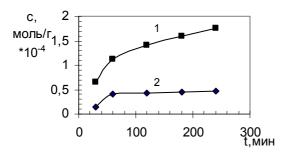


Рис. 1. Зависимость количества сорбированных ионов от времени на аморфном красном фосфоре: 1-с ионами ${\rm Fe}^{3+};$ 2- с ионами ${\rm Cu}^{2+}$

Зависимость количества сорбируемой меди от концентрации исходного раствора в диапазоне 0,01-0,1 моль/л Cu^{2+} и Fe^{3+} представлена на рис.2. Количество сорбируемых ионов увеличивается с повышением концентрации исходного раствора, что свидетельствует о существовании динамического равновесия. Однако заметно, что концентрационная кривая выходит на насыщение. Это обстоятельство можно объяснить тем, что все активные центры на красном фосфоре провзаимодействовали с ионами меди и железа. При этом ионы Cu^{2+} и Fe^{3+} , сорбируются на отрицательно заряженном дефекте. Предложенный в работе [3] механизм окисления аморфного красного фосфора кислородом и парами воды при невысоких температурах $(20 - 50^{\circ}C)$ также учитывает существенную роль вышеназванных дефектов. Этот подход позволил объяснить сильное замедление процесса окисления в отсутствии паров воды.

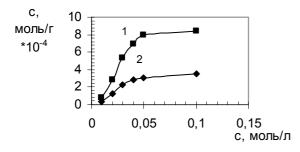


Рис. 2. Влияние концентрации растворов ионов меди и железа на количество сорбированных

ионов на аморфном красном фосфоре: 1- с ионами ${\sf Fe}^{3+}$; 2- с ионами ${\sf Cu}^{2+}$

Характер заряженных дефектов позволяет предположить, что, вероятнее всего на поверхности частиц красного фосфора будут локализованы отрицательно заряженные дефекты P_2^- . Обладая избытком электронов, они будет сорбировать молекулярный кислород, который является акцептором электронов. При этом электронная плотность на связях дефектного атома со своими соседями уменьшается, и они могут быть легко атакованы молекулами воды, являющимися электронодонорами. В результате дефектный атом превращается в молекулу фосфорной кислоты, один из его соседей присоединяет атом водорода, а другой захватывает электрон и превращается в исходный дефект.

Если электрон переходит на атом фосфора, который ранее присоединил атом водорода, то в дальнейшем этот атом превращается в фосфористую кислоту. По аналогичному принципу можно объяснить образование $\rm H_3PO_2$ и $\rm PH_3$, которые имеются в продуктах окисления красного фосфора.

Влияние содержания воды в газовой фазе на окисление красного фосфора представлено на рис. 3, Из него следует, что вода выступает именно как реагент, поскольку над 92% серной кислотой процесс практически не идет. В отсутствии кислорода реакция при невысоких температурах не протекает. Следовательно, требуется присутствие и того и другого реагента.

Скорость окисления красного фосфора, на поверхность которого были нанесены ионы меди и железа увеличивается в 5-10 раз. Но характер основных закономерностей остается неизменным. В отсутствии паров воды процесс практически не идет (рис. 4).

Используя этот подход можно предложить механизм катализа окисления красного фосфора металлами с переменной валентностью. Отрицательно заряженный дефект сорбирует положительный двухвалентный ион меди, компенсируя одну из валентностей.

ПОЛЗУНОВСКИЙ ВЕСТНИК № 4 2004

В результате его способность сорбировать кислород повышается. Затем в результате перегруппировок кислород передается атому фосфора и медь вновь превращается в двухвалентную, которая опять сорбирует кислород.

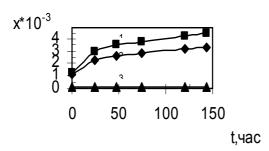


Рис. 3. Влияние давления паров воды на скорость окисления аморфного красного фосфора: 1-при PH_2o =4100 Па; 2-при PH_2o =3013 Па; 3-при PH_2o мене 0,2 Па

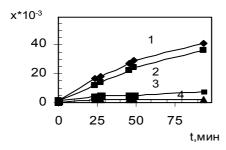


Рис. 4. Кинетика окисления аморфного красного фосфора в присутствии ионов меди и железа: 1 - с Cu^{2+} ; 2 - с Fe^{3+} ; 3- без катализатора при $Ph_2o=3013\ \Pi a;$ 4 - с Cu^{2+} при $Ph_2o=0,2\ \Pi a$

Каталитическое действие ионов Cu^{2+} на процесс окисления Ркр сильнее чем у ионов Fe^{3+} , что обусловлено практически заполненной электронами d-орбиталью меди. Кроме того, различие в энергетических состояниях Cu^{2+} и Cu^{4-} невелико ($\Delta E=0,159B$). Исходя из предложенного механизма, меньшее каталитическое действие ионов железа можно объяснить большей разницей в энергетических состояниях Fe^{3+} и Fe^{2+} ($\Delta E=+0,771B$) и не полностью заполненной электронами d- орбиталью железа.

С целью оценки каталитического действия ионов Cu^{2^+} и Fe^{3^+} на окислительные процессы на поверхности красного фосфора в жидких средах, нами было исследовано растворение красного фосфора в 17% азотной кислоте. Концентрация HNO₃ выбрана относительно невысокой для того, чтобы процесс протекал с небольшой скоростью. Зависимость времени полного растворения навески $(0,05\ r)$ в 60 мл раствора 17% азотной кислоты с различным содержанием ионов Cu^{2^+} и Fe^{3^+} представлены на рис. 5 .

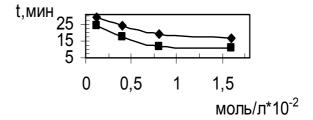


Рис. 5. Зависимость времени полного растворения навески красного фосфора в $17\%\ HNO_3$ от концентрации ионов меди(1) и железа(2)

При отсутствии ионов Cu^{2+} и Fe^{3+} процесс растворения протекает очень медленно. Время полного растворения составляет 35 минут. В присутствии ионов Cu^{2+} и Fe^{3+} процесс значительно ускоряется, причем с ростом концентрации ионов скорость растворения растет. При содержании ионов $C_u = 2 \times 10^{-3}$ моль/л навеска растворяется за 30 минут, а при $C_u = 1,6 \times 10^{-2}$ моль/л соответственно 20 минут для Cu^{2+} и 10 минут для Fe^{3+} . Тем не менее при увеличении концентрации ионов более 1×10^{-2} моль скорость растворения возрастает несущественно.

О механизме растворения красного фосфора в HNO_3 и каталитического действия на этот процесс ионов Cu^{2^+} и Fe^{3^+} по результатам выполненного эксперимента однозначно судить нельзя. Однако можно предположить, что образующийся в кислой среде нитроний-ион (NO_2^+) сорбируется на отрицательно заряженных дефектах, ослабляя связи этого атома с соседями. В дальнейшем происходит перераспределение атомов кислорода между азотом и фосфором.

Ионы меди и железа, по-видимому, играют ту же роль, что и при окислении фосфора кислородом и парами воды. Сорбируясь на дефектах, они ослабляют связи на соседних атомах фосфора.

Установленные закономерности позволяют сделать вывод о том, что механизм и каталитического и некаталитического процес-

ПОЛЗУНОВСКИЙ ВЕСТНИК № 4 2004

са во многом схожи. Ионы Cu^{2^+} и Fe^{3^+} просто облегчают сорбцию молекул O_2 и перераспределение электронов в системе P - Cu^{2^+} - O_2 , чем и обусловлен каталитический эффект.

Полученные в представленной работе результаты позволяют сделать вывод о том, что химическая активность аморфного красного фосфора в значительной степени связана с его микроструктурой и наличием дефектных экситонных состояний, на которых начинается химическое взаимодействие с окислителями как в газовой так и в жидкой средах.

ЗАКЛЮЧЕНИЕ

Исследования, выполненные в рамках настоящей работы, показали, что существует несомненная связь между концентрацией дефектов в аморфном красном фосфоре и склонностью его к окислению кислородом и парами воды, а также в растворах азотной кислоты. Этот факт подтверждается как результатами адсорбции ионов Cu^{2+} и Fe^{3+} на поверхности фосфора, так и результатами его каталитического окисления в присутствии этих ионов. Во-первых, количество сорбируемого вещества при увеличении концентрации исходных растворов ионов Cu^{2+} и Fe^{3+} выше 0,05 моль/л практически не растет, т.е. количество активных центров ограничено. Во-

вторых, увеличение скорости растворения в азотной кислоте также прекращается при повышении концентрации ионов Cu^{2^+} и Fe^{3^+} в тех же пределах, что коррелирует с экспериментами по адсорбции. Аналогичная картина наблюдается при окислении аморфного красного фосфора кислородом и парами воды в присутствии ионов Cu^{2^+} и Fe^{3^+} .

СПИСОК ЛИТЕРАТУРЫ

- 1. Практикум по химии полупроводников/ Под ред. Угая Я.А. – М.: Высш. шк., 1978. – 191 с.
- 2. Фосфор-наполнитель—антипирен / Эрман Ю.З., Махаринский М.Е., Филиппов А.А. Практикум по химии и технологии Халтуринский А. // Наполнители полимерных материалов. М.: 1983. С. 144 147.
- 3. Домин А.В. Кинетика и основные закономерности окисления аморфного красного фосфора кислородом и парами воды: Дис. ...канд. хим. наук.-Барнаул, 1990.-143 с.
- 4. Корбридж Д. Фосфор. Основы химии, биохимии, технологии. М.: Мир. 1982. 680 с.
- 5. Аморфные полупроводники / Под ред. М. Бродский. М.: Мир, 1983. 419 с.
- 6. Таланов Н.Д., Сперанская Г.В., Степанов Л.Г. Окисление элементарного красного фосфора в присутствии соединений меди / / Тр. / НИИУИФ. 1968. Вып. 209. С. 159 162.
- 7. Уильямс У.Дж. Определение анионов: Справочник. Пер. с англ. М.: Химия, 1982 624 с.