таолица 2

Длины связей и углы между ними в молекулах комплекса **1**

Связь	d, Å	Угол	θ, °
Cu1-N1	1,977(5)	N1-Cu1-O1	174,5(2)
Cu1-N4	2,007(5)	N1-Cu1-O2	89,87(18)
Cu1-O1	1,978(4)	O1-Cu1-O2	88,24(18)
Cu1-O2	1,987(4)	N1-Cu1-N4	87,7(2)
Cu1-O3	2,237(5)	O1-Cu1-N4	92,7(2)
		O2-Cu1-N4	164,2(2)
		N1-Cu1-O3	97,3(2)
		O1-Cu1-O3	88,1(2)
		O2-Cu1-O3	96,33(17)
		N4-Cu1-O3	99,50(18)

Внутренняя сфера комплекса представлена двумя ионами меди, хелатированными бис(пиразол-1-ил)метановыми фрагментами органического лиганда. Каждый из ионов меди, кроме того, связан с монодентатным нитратом и двумя молекулами координационной воды. Электронейтральность комплекса обеспечивается двумя ионными нитратами внешней координационной сферы. Таким образом, ионы меди в комплексе пентакоординированны, координационный полиэдр меди – квадратная пирамида. В экваториальной плоскости расположены два атома азота органического лиганда и два атома кислорода воды. Вершину пирамиды составляет атом кислорода нитрата.

СПИСОК ЛИТЕРАТУРЫ

- Sheldrick G.M., SADABS, Program for empirical X-ray absorption correction. Bruker-Nonius. –1990-2004.
- 2. Sheldrick G.M., SHELX-97 Release 97-2. University of Goettingen, Germany. 1998.
- Нуднова Е. А., Потапов А. С., Хлебников А. И., Огородников В. Д. Синтез битопных лигандов, содержащих фрагменты бис(пиразол-1-ил)метана // Журнал органической химии. 2007. Т. 43. Вып. 11. С. 1698-1702.
- Накамото К. ИК спектры и спектры КР неорганических и координационных соединений. – М.: Мир. 1991. – 536 с.

СИНТЕЗ КОМПЛЕКСОВ 1,3-БИС(ПИРАЗОЛ-1-ИЛ)ПРОПАНОВ С ИОНАМИ ПЕРЕХОДНЫХ МЕТАЛЛОВ

Г.А. Домина, А.С. Потапов, А.И. Хлебников, Ван Цзидэ

Синтезированы новые комплексы нитратов меди(II), кобальта(II) и никеля(II) с 1,3бис(3,5-диметилпиразол-1-ил)пропаном. По данным ИК-спектроскопии и величинам молярной проводимости установлено, что оба нитрат-иона входят в состав внутренней сферы комплексов и являются бидентатными. Выполнен рентгеноструктурный анализ комплекса с никелем, показано, что лиганд координирован бидентатно с образованием восьмичленного металлоцикла.

Бис(пиразол-1-ил)алканы являются бидентатными лигандами, способными образовывать комплексные соединения с ионами большинства переходных металлов [1]. Первые представители этого типа лигандов – бис(пиразол-1-ил)метаны были получены С. Трофименко в 1970 году [2]. Позднее были синтезированы производные 1,2-бис(пиразол-1-ил)этана [3]. Эти лиганды, содержащие одну или две метиленовые группы между пиразольными циклами, образуют хелатные комплексы с ионами металлов с образованием шести- и семичленных металлоциклов [4].

Лиганды с более длинным триметиленовым мостиком между гетероциклами – 1,3бис(пиразол-1-ил)пропаны – изучены гораздо меньше. Благодаря своей гибкости, потенциально эти лиганды могут образовывать как хелатные комплексы, так и координационные полимеры, в которых пиразольные циклы лиганда связаны с разными ионами металлов и играют роль мостиковых лигандов. В литературе описаны только комплексы первого типа. В работе [5] были синтезированы комплексы 1,3-бис(пиразол-1-ил)пропана (L¹) с хлоридами меди(II), цинка и кобальта(II), комплексы 1,3-бис(3,5-диметилпиразол-1-ил)пропана (L²) с хлоридами меди(II) и кобальта(II), а также 1,3-бис(5-метилпиразол-1комплекс ил)пропана с нитратом меди(II) [5]. Во всех этих соединениях лиганды координированы бидентатно с образованием достаточно редко встречающихся восьмичленных хелатных циклов [5].

ПОЛЗУНОВСКИЙ ВЕСТНИК № 3 2008

СИНТЕЗ КОМПЛЕКСОВ 1,3-БИС(ПИРАЗОЛ-1-ИЛ)ПРОПАНОВ С ИОНАМИ ПЕРЕХОДНЫХ МЕТАЛЛОВ

В данной работе мы сообщаем о синтезе неизвестных ранее координационных соединений бис(пиразол-1-ил)пропанов L¹ и L² с нитратами меди(II), кобальта(II) и никеля(II). Комплексы были получены при взаимодействии солей переходных металлов с лигандами в ацетоне в молярном соотношении 1:1. По данным элементного анализа, комплексы содержат по одной молекуле лиганда на каждый ион металла. Следует отметить, что комплексы такого же состава были выделены и при введении в реакцию двух молей лиганда на каждый моль нитрата металла.

Для установления состава внутренней сферы комплексов была определена молярная проводимость их растворов в ацетоне. Комплексные соединения 2-4 являются слабыми электролитами в ацетоне и, следовательно, являются нейтральными, т.е. не имеют внешней сферы. Молярная проводисоединения 1 мость составляет 52 Ом⁻¹·см²·моль⁻¹. Хотя эта величина достаточно высока, она все же значительно ниже приведенных в литературе типичных значений (100-120 Ом⁻¹ см² моль⁻¹) молярной проводимости для электролитов, распадающихся на два иона [6]. Можно предположить, что комплекс 1 является нейтральным, но в растворе происходит его частичная диссоциация под влиянием молекул растворителя.

Из нейтральности комплексов 1-4 следует, что оба нитрат-иона в них являются связанными, при этом возможна их монодентатная или бидентатная координация. Способ координации нитрат ионов может быть установлен по ИК спектрам координационных соединений [7-8]. В ИК-спектрах комплексов 1-4 были зарегистрированы полосы поглощения, соответствующие всем типам колебаний нитрат-иона (таблица 1).

Две интенсивных полосы поглощения в областях от 1480 до 1500 нм и от 1270 до 1296 см⁻¹ обусловлены асимметричными валентными колебаниями связей N-O в нитрат ионе (v₃) [7]. Полосы поглощения плоскостных деформационных колебаний (v₄) наблюдаются в областях от 739 до 757 см⁻¹ и от 665 до 710 см⁻¹ [7]. Высокие величины расщепления полос этих колебаний (Δv_3 >215 и Δv_4 >39 см⁻¹) свидетельствуют о бидентатной координации нитрат ионов во всех комплексах. При монодентатной координации расщепление полосы v₃ составляет не более 120 см⁻¹, а v₄ – менее 20 см⁻¹[7].

Т	аблица	1
•	аолла	

Характеристические частоты колебаний нитрат-ионов в комплексах 1,3-бис(пиразол-1ил)пропанов

Соед.	v_1	v_2	v_3	Δv_3	ν_4	Δv_4
1	1015	810	1500	215	749	39
			1285		710	
2	1001	806	1494	224	757	52
			1270		705	
3	1049	802	1491	218	_a	_
			1273			
4	1005	808	1499	217	745	39
			1282		706	
-		1				

Примечание: ^а полоса не зарегистрирована.

В ИК-спектрах исследованных комплексов наблюдается также нерасщепленная полоса в области от 800 до 810 см⁻¹ (внеплоскостные деформационные колебания v_2 [7]) и полоса средней интенсивности в области от 999 до 1049 см⁻¹ (симметричные валентные колебания v_1 [7]). Наличие последней полосы является дополнительным подтверждением координации нитрат-ионов, так как для свободного нитрат-иона этот колебательный переход является запрещенным по симметрии, и полоса v_1 в ИК-спектрах не проявляется, либо имеет очень малую интенсивность [8].

Таким образом, в комплексах с нитратом меди, никеля, кобальта (II) бидентатные органические лиганды занимают два координационных места, еще по два места занимают два нитрат-иона. Следовательно, ион металла находится в шестикоординированном окружении.

Октаэдрическая структура координационного центра в комплексах 1-4 подтверждается данными электронной спектроскопии. В видимой области в спектрах комплексов меди(II) 1 и 2 зарегистрировано по одной полосе поглощения с максимумами при 770 и 800 нм, что достаточно близко к литературным данным для комплексов меди(II) с октаэдрической структурой [9].

В спектре комплекса кобальта(II) **4** зарегистрировано три полосы поглощения при 390, 980 и 1080 нм. Комплекс никеля(II) **3** поглощает только при 515 нм. Положение и число полос поглощения хорошо согласуются с литературными данными для октаэдрических комплексов кобальта(II) и никеля(II) [9].

Для подтверждения приведенных выше выводов о строении комплексов был выполнен рентгеноструктурный анализ одного из полученных соединений – комплекса никеля **3**. Структура комплекса показана на рисунке 1, длины связей и углы между ними приведены в таблице 2.

Рисунок 1. Молекулярная структура комплекса [Ni(L²)(O₂NO)₂] **3**

Соединение **3** кристаллизуется в моноклинной кристаллической системе, элементарная ячейка содержит четыре формульных единицы комплекса. При исследовании надмолекулярной кристаллической структуры комплекса между его молекулами не было обнаружено межмолекулярных взаимодействий – водородных связей или π - π -стекинга.

Таблица 2

Длины связей и углы между ними в молекулах комплекса **3** [Ni(L²)(O₂NO)₂]

Связь	d, Å	Угол	θ, °
Ni-O1	2,196(4)	N1-Ni-N4	106,43(7)
Ni-O2	2,074(5)	Ni-O4-N6	94,7(4)
Ni-O4	2,056(4)	Ni-O5-N6	88,8(3)
Ni-O5	2,179(5)	Ni-O2-N5	94,4(3)
Ni-N1	2,011(5)	Ni-O1-N5	89,7(3)
Ni-N4	2,052(4)	O4-Ni-O2	157,88(7)

Рентгеноструктурное исследование комплекса никеля подтвердило сделанное ранее предположение о бидентатной координации нитрат-ионов. Органический лиганд координирован бидентатно-циклически с образованием восьмичленного металлоцикла NiN₄C₃. Координационное окружение никеля представляет собой искаженный октаэдр, включающий два атома азота и четыре атома кислорода (рисунок 1), что согласуется с данными колебательной и электронной спектроскопии.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Электропроводность растворов комплексов при 25 °С измеряли в термостатируемой кондуктометрической ячейке с электродами из нержавеющей стали, постоянная ячейки 0.244 см⁻¹. Для измерений готовили растворы с концентрацией 1.0·10⁻³ моль/л в ацетоне. Элементный анализ выполнен на СНN анализаторе Carlo Erba. ИК-спектры снимали на приборе Nikolet 5700 (в диапазоне 4000-400 см⁻¹) в таблетках КВг. Электронные спектры поглощения растворов комплексов в этаноле регистрировали на спектрофотометрах Perkin Elmer 124 (в диапазоне 200-700 нм) и СФ-26 (в диапазоне 700-1200 нм).

Строение комплекса установлено методом рентгеноструктурного анализа (РСА) по стандартной методике на автоматическом четырехкружном дифрактометре Bruker-Nonius X8Apex, оснащенном двухкоординатным CCD детектором, при комнатной температуре с использованием излучения молибденового анода (λ=0.71073 Å) и графитового монохроматора. Интенсивности отражений измерены методом ф-сканирования узких (0.5°) фреймов до 20 = 52.8°. Поглощение учтено эмпирически по программе SADABS [10]. Структура расшифрована прямым методом и уточнена полноматричным МНК в анизотропном для неводородных атомов приближении по комплексу программ SHELX-97 [11]. Атомы водорода локализованы геометрически. Кристаллографические данные и параметры дифракционного эксперимента приведены в таблице 3.

Лиганды L1 и L2 синтезированы по описанной ранее методике [12].

1,3-Бис(пиразол-1-ил)пропандинитратомедь (1). К раствору 0.225 г (0.93 ммоль) Cu(NO₃)₂·3H₂O в 2 мл ацетона приливали раствор 0.164 г (0.93 ммоль) лиганда L¹ в 1 мл того же растворителя. При смешении растворов окраска растворов становилась ярко-зеленой. Кристаллы ярко-зеленого цвета выпадали через 24 часа, после чего их отфильтровывали и высушивали. Выход соединения 1 составил 0.291 г (83%), т. пл. 226°С (с разлож.); λ, Ом⁻¹·см²·моль⁻¹: 52. Найдено, %: С 30.01; Н 3.20; N 22.84. С₉Н₁₂СиN₆O₆. Вычислено, %: С 29.72; Н 3.32; N 23.10. ИКспектр, v, см⁻¹: 1500, 1285 (v₃), 1384 (β_{С-Н}), 1075 (Pz), 1015 (v_1), 810 (v_2), 749, 710 (v_4). Электронный спектр, λ_{max} , нм (ϵ , $\pi \cdot cm^{-1} \cdot monb^{-1}$ ¹): 770 (42), 207 (28330).

СИНТЕЗ КОМПЛЕКСОВ 1,3-БИС(ПИРАЗОЛ-1-ИЛ)ПРОПАНОВ С ИОНАМИ ПЕРЕХОДНЫХ МЕТАЛЛОВ

Таблица 3

Кристаллографические данные, параметры эксперимента и уточнения структуры комплекса [Ni(L²)(O₂NO)₂] **3**

Брутто-формула	$C_{13}H_{20}N_6NiO_6$
Мол. масса	415,06
Температура, К	153(2)
Излучение (λ, Å)	0,71073
Сингония	Моноклинная
Пространственная группа	Cc
a, Å	18,247(2)
b, Å	8,5581(9)
c, Å	11,7562(13)
β, град.	102,208(4)
V, Å ³	1794,3(4)
Z	2
$\rho_{\text{выч}}, \Gamma/c \text{m}^3$	1,536
μ, мм⁻ ¹	1,125
F(000)	864
Размеры кристалла, мм	$0,57 \times 0,45 \times 0,14$
Область сбора данных	3,04-27,48
Область сбора данных по θ, град.	3,04-27,48
Область сбора данных по θ, град. Интервалы индексов	3,04-27,48 $-23 \le h \le 23, -11 \le k \le$
Область сбора данных по θ, град. Интервалы индексов отражений	3,04-27,48 -23 \le h \le 23, -11 \le k \le 11, -13 \le 1 \le 15
Область сбора данных по θ, град. Интервалы индексов отражений Измерено отражений	3,04-27,48 -23 ≤ h ≤ 23, -11 ≤ k ≤ 11, -13 ≤ 1 ≤ 15 8446
Область сбора данных по θ, град. Интервалы индексов отражений Измерено отражений Независимых отраже-	$\begin{array}{c} 3,04\text{-}27,48\\ \hline -23 \leq h \leq 23, -11 \leq k \leq \\ 11, -13 \leq l \leq 15\\ \hline 8446\\ \hline 3569 \ (R_{int}=0,0456) \end{array}$
Область сбора данных по θ, град. Интервалы индексов отражений Измерено отражений Независимых отраже- ний	3,04-27,48 -23 ≤ h ≤ 23, -11 ≤ k ≤ 11, -13 ≤ 1 ≤ 15 8446 3569 (R _{int} = 0,0456)
Область сбора данных по θ, град. Интервалы индексов отражений Измерено отражений Независимых отраже- ний Число уточняемых па-	$3,04-27,48$ $-23 \le h \le 23, -11 \le k \le 11, -13 \le 1 \le 15$ 8446 $3569 (R_{int} = 0,0456)$ 237
Область сбора данных по θ, град. Интервалы индексов отражений Измерено отражений Независимых отраже- ний Число уточняемых па- раметров	$3,04-27,48$ $-23 \le h \le 23, -11 \le k \le 11, -13 \le 1 \le 15$ 8446 $3569 (R_{int} = 0,0456)$ 237
Область сбора данных по θ, град. Интервалы индексов отражений Измерено отражений Независимых отраже- ний Число уточняемых па- раметров GOOF	$3,04-27,48$ $-23 \le h \le 23, -11 \le k \le 11, -13 \le 1 \le 15$ 8446 $3569 (R_{int} = 0,0456)$ 237 $1,067$
Область сбора данных по θ, град. Интервалы индексов отражений Измерено отражений Независимых отраже- ний Число уточняемых па- раметров GOOF R ₁ (по F для отраже-	$3,04-27,48$ $-23 \le h \le 23, -11 \le k \le 11, -13 \le 1 \le 15$ 8446 $3569 (R_{int} = 0,0456)$ 237 $1,067$ $0,0358$
Область сбора данных по θ, град. Интервалы индексов отражений Измерено отражений Часло уточняемых параметров GOOF R ₁ (по F для отражений с I > 2σ(I))	$3,04-27,48$ $-23 \le h \le 23, -11 \le k \le 11, -13 \le 1 \le 15$ 8446 $3569 (R_{int} = 0,0456)$ 237 $1,067$ $0,0358$
Область сбора данных по θ , град. Интервалы индексов отражений Измерено отражений Независимых отраже- ний Число уточняемых па- раметров GOOF R_1 (по $ F $ для отраже- ний с $I > 2\sigma(I)$) w R_2 (по $ F ^2$ для всех	$3,04-27,48$ $-23 \le h \le 23, -11 \le k \le 11, -13 \le 1 \le 15$ 8446 $3569 (R_{int} = 0,0456)$ 237 $1,067$ $0,0358$ $0,1035$
Область сбора данных по θ , град. Интервалы индексов отражений Измерено отражений Независимых отражений Число уточняемых параметров GOOF R ₁ (по F для отражений с I > 2 σ (I)) wR ₂ (по F ² для всех отражений)	$3,04-27,48$ $-23 \le h \le 23, -11 \le k \le 11, -13 \le 1 \le 15$ 8446 $3569 (R_{int} = 0,0456)$ 237 $1,067$ $0,0358$ $0,1035$
Область сбора данных по θ , град. Интервалы индексов отражений Измерено отражений Независимых отраже- ний Число уточняемых па- раметров GOOF R_1 (по F для отраже- ний с I > 2 σ (I)) w R_2 (по F ² для всех отражений) Остаточная электрон-	$3,04-27,48$ $-23 \le h \le 23, -11 \le k \le 11, -13 \le 1 \le 15$ 8446 $3569 (R_{int} = 0,0456)$ 237 $1,067$ $0,0358$ $0,1035$ $0,551$

1,3-Бис(3,5-диметилпиразол-1-ил)пропандинитратомедь (2). Получен аналогично соединению **1**. Выход 94%, светло-зеленые кристаллы, т. пл. 210-211°С; λ , Ом⁻¹·См²·моль⁻¹ ¹: 22. Найдено, %: С 37,25; Н 4,78; N 20,10. С₁₃H₂₀CuN₆O₆. Вычислено, %: С 37,19; Н 4,80; N 20,02. ИК-спектр, v, см⁻¹: 1555 (Pz), 1494, 1270 (v₃), 1385 (β _{C-H}), 1050 (Pz), 1001 (v₁), 806 (v₂), 757, 705 (v₄). Электронный спектр, λ _{max}, HM (ε , л·См⁻¹·моль⁻¹): 800 (39), 211 (12730).

1,3-Бис(3,5-диметилпиразол-1-ил)пропандинитратоникель (**3**). Получен аналогично соединению **1**. Выход 89%, зеленые кристаллы, т. пл. 300°С (с разлож.); λ , Ом⁻¹·см²·моль⁻¹: 17. Найдено, %: С 37,96; Н 4,85; N 22,48. С₁₃H₂₀NiN₆O₆. Вычислено, %: С 37,62; H 4,86; N 20,25. ИК-спектр, v, см⁻¹: 1558 (Pz), 1491, 1273 (v₃), 1385 (β_{C-H}), 1082 (Pz), 1049 (v₁), 802 (v₂). Электронный спектр, λ_{max} , нм (ϵ , л·см⁻¹·моль⁻¹): 1080 (15), 980 (3), 390 (3), 220 (24270).

1,3-Бис(3,5-диметилпиразол-1-ил)пропандинитратокобальт (4). Получен аналогично соединению **1**. Выход 78%, фиолетовые кристаллы, т. пл. 290°С (с разлож.); λ , Ом^{-1.}см^{2.}моль⁻¹: 11. Найдено, %: С 37,15; Н 4,84; N 20,55. С₁₃Н₂₀CoN₆O₆. Вычислено, %: С 37,60; Н 4,85; N 20,24. ИК-спектр, v, см⁻¹: 1554 (Pz), 1499, 1282 (v₃), 1384 (β_{C-H}), 1050 (Pz), 1005 (v₁), 808 (v₂), 745, 706 (v₄). Электронный спектр, λ_{max} , нм (ϵ , л.см^{-1.}моль⁻¹): 515 (14), 216 (18270).

СПИСОК ЛИТЕРАТУРЫ

- Pettinari C., Pettinari R. Metal derivatives of poly(pyrazolyl)alkanes II. Bis(pyrazolyl)alkanes and related systems // Coord. Chem. Rev. 2005. Vol. 249. P. 663-691.
- Trofimenko S. Geminal Poly(1pyrazolyl)alkanes and Their Coordination Chemistry // J. Am. Chem. Soc. 1970. Vol. 92. P. 5118-5126.
- Julia S., Pilar S., del Mazo J., Sancho M., Ochoa C., Elguero J., Fayet J.-P., Vertut M.-C. N-Polyazolylmethanes. I. Synthesis and NMR Study of N,N'-Diazolylmethanes // J. Heterocycl. Chem. 1982. Vol. 19. P. 1141-1145.
- Pettinari C., Santini C. Polypyrazolylborate and Scorpianate Ligands // Comprehensive Coordination Chemistry II. From Biology to Nanotechnology. Vol. 1. Elsevier. 2003. P. 159-210.
- Schuitema A., Engelen M., Koval I., Gorter S., Driessen W., Reedijk J. New didentate bispyrazole ligands forming uncommon eightring chelates with divalent copper, zinc and cobalt // Inorg. Chim. Acta. 2001. Vol. 324. P. 57-64.
- Geary W. G. The use of conductivity measurements in organic solvents for the characterisation of coordination compounds // Coord. Chem. Rev. 1971. Vol. 7. P. 81-122.
- Curtis N. F., Curtis Y. M. Some Nitrato-Amine Nickel(II) Compounds with Monodentate and Bidentate Nitrate Ions // Inorg. Chem. 1965. Vol. 4. P. 804-809.
- Gatehouse B. M., Livingstone S. E., Nyholm R.S. Infrared Spectra of Some Nitrato-coordination Complexes // J. Chem. Soc. 1957. P. 4222-4225.
- Ливер Э. Электронная спектроскопия неорганических соединений Том 2. М.: «Мир». 1991.– 536 с.
- Sheldrick G.M., SADABS, Program for empirical X-ray absorption correction. Bruker-Nonius. –1990-2004.
- 11. Sheldrick G.M., SHELX-97 Release 97-2. University of Goettingen, Germany. – 1998.
- Potapov A. S., Domina G. A., Khlebnikov A. I., Ogorodnikov V. D. Facile Synthesis of Flexible Bis(pyrazol-1-yl)alkane and Related Ligands in a Superbasic Medium // Eur. J. Org. Chem. 2007. P. 5112–5116.