СТРОЕНИЕ ТЕТРАИЗОТИОЦИАНАТОДИАММИНХРОМАТОВ(III) ДИАКВАТЕТРАДИМЕТИЛСУЛЬФОКСИДМАРГАНЦА(II) И ИНДИЯ(III)

Т.В. Уткина, И.П. Горюнова

Синтезирован комплекс $[Mn(DMSO)_4(H_2O)_2][Cr(NH_3)_2(NCS)_4]_2 \cdot 6DMSO \cdot 2H_2O$ (I) и исследован методами ИК спектроскопии, РСА. Проведен сравнительный анализ структуры полученного комплекса со структурой ранее исследованного соединения – $[In(ДMCO)_4(H_2O)_2][Cr(NH_3)_2(NCS)_4]_3$ (II).

Тетраизотиоцианатодиамминхромат(III) аммония (соль Рейнеке) применяется для определения количественного содержания различных металлов и органических соединений [1,2]. Согласно Кембриджской базе структурных данных кристаллографические сведения о соединениях, содержащих тетраизотиоцианатодиамминхромат (III) - ион, ограничены [3].

Впервые получен и исследован методами ИК спектроскопии и РСА тетраизотиоцианатодиамминхромат (III) комплекса марганца (II) с диметилсульфоксидом (ДМСО) (I).

Монокристалл комплекса I для РСА был получен из водных растворов соединений MnCl₂·4H₂O, NH₄[Cr(NH₃)₂(NCS)₄]·H₂O и ДМСО. Состав тетраизотиоцианатодиамминхромата (III) комплекса марганца (II) с ДМСО согласно РСА - [Mn(ДМСО)₄(H₂O)₂][Cr(NH₃)₂-(NCS)₄]₂·6ДМСО·2H₂O.

ИК спектры соединения регистрировали на Фурье – спектрометре System-2000 фирмы «Perkin-Elmer» в диапазоне 400-4000 см⁻¹.

В ИК – спектре комплекса I присутствуют полосы поглощения, характерные для колебаний N-координированного NCS–иона: v(CN)=2085, v(CS)=850, δ(NCS)=491 см⁻¹. Полоса валентных колебаний молекул ДМСО v(SO) смещена в область 1003 см⁻¹, что указывает на связь лиганда с комплексообразователем через атом кислорода. В соединении I обнаружены полосы поглощения, характерные для молекул воды - v(OH) при частоте 3550–3200 см⁻¹. Полученные ИК спектроскопические данные для соединения I согласуются с результатами РСА.

Рентгеноструктурные измерения проводили по стандартной методике на автоматическом четырехкружном дифрактометре Bruker-Nonius X8Арех с излучения молибденового анода и графитового монохроматора. Структуру расшифровывали прямым методом и уточняли полноматричным МНК в анизотропном для неводородных атомов приближении по комплексу программ SHELX - 97.

ПОЛЗУНОВСКИЙ ВЕСТНИК № 3 2008

Проведен сравнительный анализ структуры полученного комплекса I со структурой ранее исследованного соединения - тетраизотиоцианатодиамминхромата (III) диакватетрадиметилсульфоксидиндия (III) – (II). Синтез комплекса описан в [4].

При сравнении структур комплексов было установлено следующее:

1) кристаллы обоих комплексов кристаллизуются в триклинной сингонии. Для комплекса I: a = 11.7784(3), b = 12.1760(3), c = 13.1922(2) Å, α = 85.5420(10)°, β = 87.9000(10)°, γ = 70.3680(10)°, V = 1776.46(7) Å³, пр.гр. Р1, Z = 1, $\rho_{\text{выч.}}$ = 1.444 г/см³. Для комплекса II: a = 8.172(3), b = 14.549(5), c = 14.748(5) Å, α = 116.68(3)°, β = 103.16(3)°, γ = 97.25(4)°, V = 1472.2(9) Å³, пр.гр. Р1, Z = 1, $\rho_{\text{выч.}}$ = 1.600 г/см³. Строение и нумерация атомов в соединениях I и II представлены на рис. 1 и 2.

Рисунок 1. Строение и нумерация атомов в соединении [Mn(ДМСО)₄(H₂O)₂][Cr(NH₃)₂(NCS)₄]₂· 6ДМСО·2H₂O

 Структуры соединений построены из комплексных катионов [Me(ДМСО)₄(H₂O)₂]ⁿ⁺ и анионов [Cr(NH₃)₂(NCS)₄]⁻. Координационное соединение I стабилизируется водородными связями между сольватными молекулами и ионами комплексного соединения. Катион [Mn(ДMCO)₄(H₂O)₂]²⁺ связан водородными связями: протоны молекул воды с двумя сольватными молекулами ДМСО и двумя сольватными молекулами воды; атомы кислорода молекул ДМСО - с двумя анионами [Cr(NH₃)₂(NCS)₄].

В свою очередь, анион [Cr(NH₃)₂(NCS)₄] реализует в структуре водородные связи: протоны NH₃-групп с четырьмя сольватными молекулами ДМСО, с одной сольватной молекулой воды и одним катионом, который связывается атомом серы одной из изотиоцианатных групп.

Рисунок 2. Строение и нумерация атомов в соединении $[In(ДMCO)_4(H_2O)_2][Cr(NH_3)_2(NCS)_4]_3$

3) В соединениях I и II центральные атомы марганца, индия и хрома имеют искаженное октаэдрическое окружение. Валентные углы при атомах хрома отклоняются от 90° в пределах ± 0.95° (в соединении I), ± 3.40° (в соединении II).

4) В обоих комплексах атомы хрома окружены атомами азота изотиоцианатных групп в экваториальной плоскости и атомами амминогрупп в аксиальной плоскости. С увеличением экваториального расстояния Cr–N наблюдается уменьшение аксиального расстояния Cr–N и сокращения длин связей NCS групп комплексных соединений (таблица 1).

Таблица 1

Диапазон	знач	ений	длин	связей	И	ва-
лентных углов	в тет	граизо	отиоциа	анатоди	ам	1МИ-
хромат (III) –	ионе	компл	тексны	х соеди	не	ний
(среднее значе	ние)					

		Комплекс		
		Ι	II	
d, Å	Cr–N*	1.994-2.017	1.993-2.009	
		(2.005)	(2.001)	
	Cr-N**	2.051-2.071	2 069 (2 069)	
		(2.061)	2.009 (2.009)	
	N**-C	1.161–1.164	1.153–1.162	
		(1.163)	(1.158)	
	C–S	1.621-1.634	1.621-1.631	
		(1.628)	(1.626)	
ю, град	N**CrN*	89.05-90.95	86.6–93.4	
	CrN**C	167 5 170 1	159.0–166.7	
		107.5-170.1	(162.9)	
	N**CS	178.4-179.2	178.8-179.3	
		(178.7)	(179.1)	

* -атом азота NCS группы; ** - атом азота NH₃ группы

Таблица 2

Диапазон значений длин связей и валентных углов в катионах комплексных соединениях (среднее значение)

		Комплекс		
		Ι	II	
d, Å	S–O	1,525 - 1,523	1,532–1,541	
		(1,524)	(1,537)	
	S–C	1,778 - 1,785	1,752–1,771	
		(1,781)	(1,760)	
	Me–O*	2,178 (2,178)	2,179 (2,179)	
	Me-O**	2,168 - 2,177	2,096-2,097	
		(2,174)	(2,097)	
ю, град	MeO**S	119 – 127,9	124,6-129,8	
		(123,4)	(127,2)	
	O*MeO**	89,14 - 90,86	(90,7)	
		(90,0)		
	O**SC	104,25 - 5,56	100,8-104,5	
		(104,7)	(102,7)	
	CSC	97,57 - 99,29	98,9-100,1	
		(98,43)	(99,5)	

О* - атом кислорода молекулы H₂O, O** - атом кислорода молекулы ДМСО

Аналогичное изменение аксиальных и экваториальных расстояний Ме–О наблюдается и в катионах комплексных соединений (таблица 2).

Удлинение одной связи при укорочении другой, или уменьшении одного валентного

ПОЛЗУНОВСКИЙ ВЕСТНИК № 3 2008

СТРОЕНИЕ ТЕТРАИЗОТИОЦИАНАТОДИАММИНХРОМАТОВ(III) ДИАКВАТЕТРАДИМЕТИЛСУЛЬФОКСИДМАРГАНЦА(II) И ИНДИЯ(III)

угла при увеличении другого часто являются компенсирующими друг друга эффектами [5].

Авторы статьи выражают благодарность сотрудникам института неорганической химии им. А.В.Николаева СО РАН А.В. Вировцу, Е.В. Пересыпкиной за помощь в проведении рентгеноструктурного анализа.

СПИСОК ЛИТЕРАТУРЫ

- BhargavaS.K., Mathur P.K. Gravimetric estimation of silver as diamminesilver (I) tetraisothiocyanatodianilinechromate (III) // Curr. Sci. 1974. V.43, №13. P.408–409.
- Pandey, Y.N., Mathur P.K. Isothicyanatochromates of tetrakis (1.10 - phenanthroline) cerium (IV) // J. Indian. Chem. Soc. 1985.

V.62, №2. P.153–154.

- Sheldrick G.M., SADABS, Program for empirical X-ray absorption correction, Bruker-Nonius. 1990-2004.
- Черкасова Т.Г., Горюнова И.П. Синтез и кристаллическая структура тетраизотиоцианатодиамминхромата (III) диакватетрадиметилсульфоксидиндия (III) // Журн. неорган. химии. 2003.Т.48, №4. С.611–615.
- Костромина Н.А., Кумок В.Н., Скорик Н.А. Химия координационных соединений: учеб. пособие для хим. фак. ун-тов и хим.технол. спец. вузов. – М.: Высш. шк. 1990. – 431 с.

КОМПЛЕКСНЫЕ СОЕДИНЕНИЯ КОБАЛЬТА С ИЗОТИОЦИАНАТ-ИОНОМ И БИДЕНТАТНЫМИ ОРГАНИЧЕСКИМИ ЛИГАНДАМИ

Ю.А. Михайленко, О.В. Каткова

Получены и исследованы комплексы состава [Co₂(LH)₃(L)₃][Co(NCS)₄](NCS) и [Co(NCS)₂(Amy)₂], где LH = моноэтаноламин, Amy = амидопирин. Методами ИК-спектроскопи и рентгеноструктурного анализа определена координация тиоцианатной группы.

ВВЕДЕНИЕ

Изучение взаимодействия солей кобальта(II) с полифункциональными лигандами дает возможность получить моноядерные, полиядерные и хелатные соединения. Образующиеся продукты являются потенциально биологически активными.

Относительно способа координации амидопирина в литературе нет единого мнения. Изучение спектроскопических характеристик комплексов нитратов лантаноидов с амидопирином свидетельствует о бидентатности лиганда [1]. Однако, рентгеноструктурное исследование комплекса [Cd(H₂O)(NO₃)₃(Amy)₂]·CH₃CN [2] доказывает монодентатный характер амидопирина. При взаимодействие изотиоционата кобальта(II) с моноэтаноламином (МЭА) [3] получен и структурно охарактеризован комплекс состава [Co(LH)₃][Co(L)(LH)₂](SCN)₃, где LH = МЭА. В кристалле комплексные ионы образуют димерные ассоциаты, которые связаны между собой тремя короткими водородными связями. Выяснено, что изотиоцианатная группа ПОЛЗУНОВСКИЙ ВЕСТНИК № 3 2008

вовлечена в образование водородной связи. В [4] получен [Ni(en)₃][Zn(NCS)₄] · CH₃CN, где атом цинка находится в тетраэдрическом окружении иона-NCS⁻.

Целью нашей работы являлось выявление способа координации Co(II) в комплексах, содержащих тиоицианат-ион и такие лиганды как моноэтаноламин и амидопирин, а также подтверждение возможности образования нейтральных и биядерных координационных соединений.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовали реактивы марки «х.ч.». В полученных соединениях определяли содержание кобальта(III) гравиметрически в виде Co₃O₄, кобальта(II) – в виде оксихинолята Co(C₉H₇NO)₂. Изотиоцианатную группу осаждали нитратом серебра [5].

ИК-спектры образцов регистрировали на инфракрасном Фурье - спектрометре System – 2000 фирмы "Perkin-Elmer"с прессованием образцов в таблетки с KBr.

РСА комплекса II проведен на дифрактометре Bruker Р4 (Мо K_{α} -излучение, графи-