КОМПЛЕКСЫ КОБАЛЬТА (II), НИКЕЛЯ (II), СКАНДИЯ(III), ИТТРИЯ(III), ЛАНТАНА(III) С ТЕТРАИЗОТИОЦИАНАТОДИАММИНХРОМАТ(III)-ИОНОМ, ДИМЕТИЛСУЛЬФОКСИДОМ И ϵ -КАПРОЛАКТАМОМ

Т.В. Уткина, И.В. Исакова

Синтезированы и проведены некоторые физико-химические исследования тетраизотиоцианатодиамминхроматов (III) комплексов кобальта (II), никеля (II) с диметилсульфоксидом и скандия(III), иттрия(III), лантана(III) с *ε*-капролактамом.

В основе многих чувствительных и избирательных методов анализа лежат реакции образования разнолигандных комплексных соединений. Одним из таких комплексов является тетраизотиоцианатодиамминхромат (III) аммония - NH₄[Cr(NH₃)₂(NCS)₄]·H₂O (соль Рейнеке) [1,2]. Он служит для выделения аминов, аминокислот, комплексных катионов и металлорганических оснований [3,4].

Нейтральные органические лиганды ДМСО (диметилсульфокид) и є-КПЛ (єкапролактам) имеют в своем составе по два донорных атома, наличие которых способствует образованию разнообразных структур.

Синтезированы и проведены некоторые физико-химические исследования тетраизотиоцианатодиамминхроматов (III) комплексов $Co^{2+}(I)$, Ni²⁺ (II) с ДМСО и Sc³⁺(III), Y³⁺(IV), La³⁺(V) с ϵ -КПЛ.

В качестве исходных веществ для синтеза комплексов использовали: $CoCl_2 \cdot 4H_2O$; Ni $Cl_2 \cdot 4H_2O$, $Sc(NO)_3 \cdot 4H_2O$, $Y(NO)_3 \cdot 6H_2O$, La(NO)_3 \cdot 6H_2O, NH_4[Cr(NH_3)_2(NCS)_4]·H_2O, ϵ -КПЛ, ДМСО марок «х.ч.».

Осадки выпадали при добавлении соответствующего лиганда (водный раствор є-КПЛ, ДМСО) к смеси разбавленных водных растворов солей металлов и соли Рейнеке. Полученные осадки отделяли от маточного раствора фильтрованием, промывали водой и высушивали на воздухе при комнатной температуре.

В координационных соединениях I,II определяли содержание металлов и рейнекатионов гравиметрическим методом, ДМСОтитрометрическим. По результатам химического анализа получены комплексы составов: [Co(ДМСО)₄(H₂O)₂][Cr(NH₃)₂(NCS)₄]₂,

[Ni(ДMCO)₄(H₂O)₂][Cr(NH₃)₂(NCS)₄]₂. Результаты химического анализа комплексов представлены в таблице 1.

Элементный анализ образцов III–V проводили на аналитическом сканирующем электронном микроскопе JSM 6490 LA фирмы JEOL, оснащенном EDS-спектрометром JED 2300. Состав соответствовал следующим формулам: Sc[Cr(NH₃)₂(NCS)₄]₃·6КПЛ; Y(NO₃)₂ [Cr(NH₃)₂(NCS)₄]·6КПЛ; La(NO₃)₂[Cr(NH₃)₂-(NCS)₄]·6КПЛ. Результаты элементного анализа представлены в таблице 2.

Таблица 1

Результаты химического анализа соединений I и II

Молекулы,	Содержание, <u>вычисл.</u> /найд., %				
ИОНЫ	Соединение				
	Ι	II			
ДМСО	<u>29,93</u> 29,57	$\frac{29,94}{29,20}$			
$[Cr(NH_3)_2(NCS)_4]^-$	<u>60,98</u> 60,11	<u>60,99</u> 60,53			
Me ²⁺	<u>5,64</u> 5,50	<u>5,62</u> 5,47			

Соединения устойчивы на воздухе при стандартных условиях, растворимы в спирте, ацетоне, ДМСО, диметилформамиде, моноэтаноламине, ацетонитриле.

Таблица 2

Химический состав комплексов III, IV,V

	Состав, <u>вычисл</u> ./ найд., %						
Элементы	Соединение						
	III	IV	V				
C	<u>34,34</u>	<u>28,90</u>	<u>38,10</u>				
C	34,21	28,80	37,90				
Cr	<u>9,30</u>	4,80	4,10				
CI	8,90	4,70	3,90				
Ma	2,68	<u>7,30</u>	<u>11,03</u>				
Ivie	1,90	7,20	10,99				
N	20,00	<u>13,50</u>	<u>15,5</u>				
IN	18,00	13,41	15,00				
0	<u>5,72</u>	16,50	15,2				
0	5,49	14,91	14,98				
S	22,80	13,50	10,1				
3	22,00	13,20	9,80				

КОМПЛЕКСЫ КОБАЛЬТА(II), НИКЕЛЯ(II), СКАНДИЯ(III), ИТТРИЯ(III), ЛАНТАНА(III) С ТЕТРАИЗОТИОЦИАНАТОДИАММИНХРОМАТ(III)-ИОНОМ, ДИМЕТИЛ-СУЛЬФОКСИДОМ И ٤-КАПРОЛАКТАМОМ

Особенности строения комплексов установлены ИК спектроскопическим методом. ИК спектры образцов регистрировали с использованием ИК спектрометра с Фурье преобразованием FTIR "Tensor27" фирмы Bruker в интервале частот 4000-400 см⁻¹.

Для определения типа связи изотиоцианатной группы в комплексах с металлами существуют некоторые эмпирические критерии.

Изолированный в матрице CsI ион NCS⁻ при 27° имеет значения v(CN), v(CS), δ (NCS) соответственно 2066; 744; 468 см⁻¹[5].

В ИК спектрах полученных соединений положение частот валентных колебаний v(CS) в интервале 830-755 см⁻¹ и деформационных колебаний группы δ(NCS) в области 499-483 см⁻¹ информируют о координации роданидной группы через атом азота. Для аммиачных лигандов в интервале частот 4000–400 см⁻¹ можно ожидать четыре колебания: v(NH₃) = 3414–3041 см⁻¹, δ (NH₃) = 1710–1628 см⁻¹, 1403–950см⁻¹, 818–620см⁻¹[6].

В спектрах исследуемых комплексов аммиачные лиганды проявляются полосами валентных и деформационных колебаний (таблица 3).

В полученных комплексах I и II ДМСО координируется с металлами через Одонорный центр, т.к. наблюдается понижение частоты v(SO) на 60-62 см⁻¹ по сравнению с v(SO) для "свободного" ДМСО (1055 см⁻¹) и одновременно – повышение частоты v(CS) на 2-3 см⁻¹ (для чистого ДМСО v(CS)=697 см⁻¹) В ИК спектрах наблюдаются характерные полосы поглощения: v(OH) при частоте 3850-3550 см⁻¹.

Таблица 3

Co-	Частоты полос поглощения, см ⁻¹													
еди	ε-КПЛ				ДМСО			H ₂ O	$[Cr(NH_3)(NCS)_4]^{-1}$					
не- ние	v(CO)	v(NH)	v(CH ₂)	δ(CH ₂)	v(CH ₃)	$\delta(CH_3)$	v(SO)	v(CS)	v(OH)	v(CN)	v(CS)	δ(NCS)	v(NH)	δ(NH)
Ι	Ι	-	_	-	3001 2919 2360	1317 948	993	699	3820- 3550	2080	830	498	3297– 3225	1604 1413 1258 623
п	_	_	_	_	3002 2919 2355	1317 948	995	700	3850– 3550	2080	830	499	3298– 3230	1605 1413 1258 613
ш	1616	3333	2927	1501- 1262	-	-	-	-	-	2080	755	491	3225	1201, 1163
IV	1622	3294	2932	1499- 1436	-	-	-	-	-	2090	826	494	3294	1243, 1200
v	1631	3318	2933- 2855	1491- 1288	-	-	-	-	_	2073	823	483	3318	1200

ИК спектроскопические данные комплексов

В спектрах комплексов III–V присутствуют полосы поглощения, характерные є-КПЛ. Способ координации є-КПЛ с металлами в комплексах определяется положением полосы валентных колебаний группы С=О.

Так, в спектрах наблюдается понижение частоты v (CO) с 1665 см⁻¹ (в несвязанном є-КПЛ) до 1616,1622,1631см⁻¹ (в комплексах иттрия(III), скандия(III), лантана(III),соответственно)[6].

Рентгенофазовый анализ соединений выполняли на дифрактометре ДРОН-3М (CuK_α-излучение). Интенсивность излучения – 2000 Вт/м².

Анализируя рентгенографические картины полученных комплексов, было отмечено, что наиболее интенсивные линии соеди-

ПОЛЗУНОВСКИЙ ВЕСТНИК № 3 2008

нений I и II сосредоточены в области малых углов. Большое количество линий и характер их распределения характеризует кристаллы низшей категории. Штрихрентгенограммы соединений представлены на рисунке1.

Таким образом, ИК спектроскопическим методом установлено, что комплексы являются изотиоцианатными, а координация органического лиганда с катионами металлов осуществляется через атом кислорода є-КПЛ и ДМСО. По результатам РФА комплексы [Me(ДMCO)₄(H₂O)₂][Cr(NH₃)₂(NCS)₄]₂ изоструктурны. Анализ дифрактометрических характеристик не выявил наличия примесей исходных реагентов, тем самым подтвердил индивидуальность полученных соединений.

Рисунок 1. Штрихрентгенограммы комплексных соединений

СПИСОК ЛИТЕРАТУРЫ

- Takeuchi Y., Saito Y. Structure of Reineckate Complex Ion // Bull. Chem. Soc. Jpn. 1957. Vol.30. №4. P.319–325.
- House, J.E. The decomposition of Reinecke's salt NH₄[Cr(NH₃)₂(NCS)₄] // Thermochim acta. 1979. Vol.32. №1–2. P.87–90.
- Jasinski T., Smagowski H. Miareczkowanie potenciometryczne czterorodanodwuam minochrominow w środowsiku niewodnym// Chem. Analit. 1963. Vol.8. №4. P.525–527.
- Bandelin F.J., Tuschhoff J.V. Colorimetric determination of thiamine in pharmaceutical products // Analytical Chemistry. 1953. Vol.25. №8. P.1199–1201.
- Химия псевдогалогенидов /Под ред. Голуба А.М., Келера Х.. Киев: Вища шк. 1981.360с.
- Накамото К. ИК-спектры и спектры КР неорганических и координационных соединений. - М.: Мир. 1991. –536 с.

ФОТОРАЗЛОЖЕНИЕ 7,7 - ДИМЕТИЛ-7 ГЕРМАНОРБОРНАДИЕНА В НИЗКОТЕМПЕРАТУРНЫХ МАТРИЦАХ

М.В. Калетина, В.В. Королев

С помощью фотолиза в низкотемпературных углеводородных матрицах изучено фотохимическое разложение 7,7'-диметил-7-германорборнадиена. Показано, что в матрице метилциклогексана диметилгермилен имеет полосу поглощения с максимумом 430 нм и коэффициент экстинкции 2700 M⁻¹ см⁻¹. Через 2 часа, за счёт взаимодействием π-системы 1,2,3,4-тетрафенилнафталина со свободной р-орбиталью германия максимум полосы поглощения диметилгермилена смещается с 430 на 414 нм. Вместе с диметилгермиленом наблюдалось образование тетраметилдигермена, имеющий полосу поглощения на 368 нм.

ВВЕДЕНИЕ

Одной из важных задач физической химии является исследование механизмов химических реакций и свойств образующихся в них промежуточных соединений. Эти знания дают возможность проводить целенаправленный синтез новых веществ с заданными свойствами.

До второй половины 20 века практическое применение соединений германия оставалось весьма ограниченным. Высокий интерес к ним возник в связи с развитием полупроводниковой электроники [1]. В частности, разложением германийорганических соединений получаю германий высокой чистоты. Несколько позднее стали известны биологически активные свойства германийорганических соединений [2].

Гермилены - это короткоживущие соединения, содержащие электронейтральный двухвалентный атом германия общей формулы R'R"Ge: (два заместителя и два свободных электрона). Они являются одними из наиболее часто образующихся ключевых интермедиатами в реакциях германийорганических соединений [3]. В представленной работе, объектом исследования является диметилгермилен (Me₂Ge:).

Наиболее часто используемым источником Me₂Ge: является 7,7-диметил-1,2,3,4-тетрафенил-5,6-бензо-7-германорборнадиен (GeNB), который термически или фотохимически разлагается с образованием