АЛГОРИТМЫ КОНТРОЛЯ КООРДИНАТ ИСТОЧНИКА ИЗЛУЧЕНИЯ НА ФОТОЧУВСТВИТЕЛЬНОЙ ПОВЕРХНОСТИ МАТРИЦЫ

В.В.Замятин

Для измерения координат точечного источника излучения на поверхности фоточувствительной матрицы применяют центроидальные алгоритмы или основанные на аппроксимации видеосигнала гауссоидой, параболоидой и другими функциями. Погрешности измерений имеют отличия алгоритмов, отношения сигнал/шум, неоднородности фоточувствительности, оптических, геометрических параметров матриц, оптических систем (включая фильтры R, G, B).

На сегодняшний день, имея мощные вычислительные средства и видеосистемы, проведен анализ методов вычисления координат источника излучения с использованием всей цифровой информации каналов R, G, B на примере центроидальных алгоритмов.

Применялись следующие виды алгоритмов вычисления координаты источника излучения на фоточувствительной поверхности матрицы:

 Центроидальный алгоритм вычисления координаты X_c в строке с максимальной амплитудой видеосигнала

$$X_{c} = \frac{\sum_{k=-n}^{n} A_{xm-k} \cdot X_{m-k}}{\sum_{k=-n}^{n} A_{xm-k}};$$

где X_{m-k} – координата X центра ячейки, амплитуда которой равна A_{xm-k}; n – количество ячеек, используемых для вычислений.

2) Центроидальный алгоритм со сложением амплитуд нескольких строк видеосигнала

$$X_{c} = \frac{\sum_{k=-n}^{n} A_{xm-k} \cdot X_{m-k}}{\sum_{k=-n}^{n} A_{xm-k}},$$

 $A_{xm-k} = (\sum_{i=-p}^{p} A_i) / p$ - сумма амплитуд строк

выше и ниже строки с максимальной амплитудой, X_{m-k} – координата X центра ячейки, амплитуда которой равна A_{xm-k}; n – количество ячеек, используемых для вычислений; p – количество строк.

 Центроидальный алгоритм со сложением амплитуд нескольких строк с учетом весовых коэффициентов

$$X_{c} = \frac{\sum_{k=-n}^{n} A_{xm-k} \cdot X_{m-k}}{\sum_{k=-n}^{n} A_{xm-k}} ,$$

$$A_{xm-k} = \sum_{i=-p}^{p} A_{i} \cdot (A_{i} / A_{sum}) , A_{sum} = \sum_{i=-p}^{p} A_{i} ,$$

где A_i- сумма амплитуд с учетом весовых коэффициентов строк выше и ниже строки с максимальной амплитудой; Х_{m-k} – координата Х центра ячейки, амплитуда которой равна А_{хm-k}; n – количество ячеек, используемых для вычислений; p – количество строк.

4) Центроидальный алгоритм со сложением координат источника излучения в нескольких строках

$$X_{c} = (\sum_{i=-p}^{p} X_{p}) / p$$
 - сумма координат строк

выше и ниже строки с максимальной амплитудой

$$X_{p} = rac{{\sum\limits_{k = -n}^{n} {A_{xm-k} \cdot X_{m-k} } }}{{\sum\limits_{k = -n}^{n} {A_{xm-k} } }},$$
 где X_{m-k} – координата

Х центра ячейки, амплитуда которой равна А_{хт-к}, n – количество ячеек, используемых для вычислений, p – количество строк.

5) Центроидальный алгоритм со сложением координат источника излучения в нескольких строках с учетом весовых коэффициентов

$$X_c = \sum_{i=-p}^{p} X_i (X_p / X_{sum})$$

 $X_{sum} = \sum_{i=-p}^{p} X_i$, где X_{sum} – сумма координата Х

центра ступеньки, р – количество строк.

Алгоритмы вычисления координаты Y_c имеют аналогичный вид для обработки видеосигнала по столбцам.

Изображение точечного источника излучения в красной области спектра с длиной

ПОЛЗУНОВСКИЙ ВЕСТНИК №3 2008

АЛГОРИТМЫ КОНТРОЛЯ КООРДИНАТ ИСТОЧНИКА ИЗЛУЧЕНИЯ НА ФОТОЧУВСТВИТЕЛЬНОЙ ПОВЕРХНОСТИ МАТРИЦЫ

волны λ=0,63 мкм формировалось на фоточувствительное поверхности ПЗС матрицы. Формат цифровой матрицы составлял 2736 х 3648 пикселей размером 5,32 х 7,18 мм.

Изображение излучателя фокусировалось через цветной фильтр Байера с классическим способом расположения светофильтров на матрице «красный – зеленый – зеленый – синий» (RGGB) и занимало 5х5 ячеек. Видеосигнал в цветовых каналах RGB формировался производителем матрицы собственными алгоритмами восстановления цветного изображения. Амплитуда видеосигнала от источника излучения достигала 256 уровней градации яркости в каждом цветовом канале.

Установление зависимости погрешности измерения координат от отношения сигнал/шум производилось в красном R цветовом канале методом математического моделирования. К амплитуде видеосигнала в каждой ячейке добавлялся белый шум заданной амплитуды и производились вычисления координаты источника излучения на фоточувствительно поверхности ПЗС матрицы с использованием центроидальных алгоритмов.

Результаты эксперимента с использованием математического моделирования отношения сигнал/шум приведены в таблицах:

Таблица 1

Погрешности измерений координаты точечного источника излучения в цветовом канале R отношения сигнал/шум. Центроидальный алгоритм вычисления координаты X_c в строке с максимальной амплитудой видеосигнала.

Сигнал/	Шум, Координата тах,		Координата min,	Координата	Разброс координат,	
Шум	%	мкм пкс	мкм пкс	Х _с , мкм пкс	max-min, мкм пкс	
100	1	0,4897785	0,4863014	0,4880342	0,0034771	
50	2	0,4931624	0,4811966	0,4880342	0,0119658	
25	4	0,500000	0,4795222	0,4880342	0,0204778	
10	10	0,5186125	0,4603448	0,4880342	0,0582677	
5	20	0,5475352	0,4326599	0,4880342	0,1148753	

Таблица 2

Погрешности измерений координаты точечного источника излучения в цветовом канале R отношения сигнал/шум. Центроидальный алгоритм со сложением амплитуд нескольких строк видеосигнала.

Сигнал/	Шум,	Координата max,	Координата min,	Координата	Разброс координат,	
Шум	%	мкм пкс	мкм пкс	Х _с , мкм пкс	max-min, мкм пкс	
100	1	0,6192544	0,6117288	0,6162193	0,0075256	
50	2	0,6209279	0,6117576	0,6162193	0,0091703	
25	4	0,6249262	0,6042980	0,6162193	0,0206282	
10	10	0,6478077	0,5861425	0,6162193	0,0616652	
5	20	0,6661773	0,5430529	0,6162193	0,1231244	

Таблица 3

Погрешности измерений координаты точечного источника излучения в цветовом канале R отношения сигнал/шум. Центроидальный алгоритм со сложением амплитуд нескольких строк с учетом весовых коэффициентов.

Сигнал/	Шум,	Координата тах,	Координата min,	Координата	Разброс координат,	
Шум	%	мкм пкс	мкм пкс	Х _с , мкм пкс	max-min, мкм пкс	
100	1	0,4918608	0,4875032	0,4898354	0,0043576	
50	2	0,4919704	0,4861256	0,4898354	0,0058448	
25	4	0,4947918	0,4822817	0,4898354	0,0125101	
10	10	0,5057268	0,4724775	0,4898354	0,0332493	
5	20	0,5174480	0,4439293	0,4898354	0,0735187	

ЗАМЯТИН В.В.

Таблица 4

Погрешности измерений координаты точечного источника излучения в цветовом канале R отношения сигнал/шум. Центроидальный алгоритм со сложением координат источника излучения в нескольких строках.

Сигнал/	Шум,	Координата max,	Координата min,	Координата	Разброс координат,	
Шум	%	МКМ ПКС	МКМ ПКС	Х _с , мкм пкс	max-min, мкм пкс	
100	1	0,4918662	0,4882300	0,4900452	0,0036362	
50	2	0,4909706	0,4859602	0,4900452	0,0050104	
25	4	0,4940990	0,4868421	0,4900452	0,0072569	
10	10	0,5027223	0,4753537	0,4900452	0,0273686	
5	20	0,5186788	0,4453303	0,4900452	0,0733485	

Таблица 5

Погрешности измерений координаты точечного источника излучения в цветовом канале R отношения сигнал/шум. Центроидальный алгоритм со сложением координат источника излучения в нескольких строках с учетом весовых коэффициентов.

Сигнал/	Шум,	Координата тах,	Координата min,	Координата	Разброс координат,	
Шум	%	мкм пкс	МКМ ПКС	Х _с , мкм пкс	max-min, мкм пкс	
100	1	0,4894880	0,4866870	0,4878462	0,0028010	
50	2	0,4900628	0,4836276	0,4878462	0,0064352	
25	4	0,4940424	0,4840507	0,4878462	0,0099917	
10	10	0,5007743	0,4768222	0,4878462	0,0239521	
5	20	0,5134185	0,4405249	0,4878462	0,0728936	

Таблица 6

Погрешность измерений сигнал/шум центроидальных алгоритмов вычисления координат ист	ΌЧ-
ника излучения на фоточувствительной поверхности ПЗС матрицы	

Шум, %	Сигнал /шум	Центроидальный алгоритм вычисления координаты Х _с в строке с максимальной ам- плитудой видеосигнала	Центроидальный алгоритм со сложением амплитуд не- скольких строк видеосигнала	Центроидальный алгоритм со сложением амплитуд не- скольких строк с учетом ве- совых коэффициентов	Центроидальный алгоритм со сложением координат ис- точника излучения в не- скольких строках	Центроидальный алгоритм со сложением координат ис- точника излучения в не- скольких строках с учетом весовых коэффициентов					
20	1	0,1148753	0,1231244	0,0735187	0,0733485	0,0728936					
10	2	0,0582677	0,0616652	0,0332493	0,0273686	0,0239521					
4	4	0,0204778	0,0206282	0,0125101	0,0072569	0,0099917					
2	10	0,0119658	0,0091703	0,0058448	0,0050104	0,0064352					
1	20	0,0034771	0,0075256	0,0043576	0,0036362	0,0028010					
		Погрешность (сигнал/шум в	МКМ ПКС	Погрешность сигнал/шум в мкм пкс						

В таблицах (1 – 6) <u>мкм пкс</u> – величина умноженная на размер пикселя. Размер пикселя составляет 5320 мкм / 2736 для исследуемой матрицы.

АЛГОРИТМЫ КОНТРОЛЯ КООРДИНАТ ИСТОЧНИКА ИЗЛУЧЕНИЯ НА ФОТОЧУВСТВИТЕЛЬНОЙ ПОВЕРХНОСТИ МАТРИЦЫ

Рисунок 1. Погрешность измерений координат X_c. Центроидальный алгоритм вычисления координаты X_c в строке с максимальной амплитудой видеосигнала.

Рисунок 2. Погрешность измерений координат X_c. Центроидальный алгоритм со сложением амплитуд нескольких строк видеосигнала.

ЗАМЯТИН В.В.

Рисунок 3. Погрешность измерений координат X_с. Центроидальный алгоритм со сложением амплитуд нескольких строк с учетом весовых коэффициентов.

Рисунок 4. Погрешность измерений координат X_c. Центроидальный алгоритм со сложением амплитуд нескольких строк с учетом весовых коэффициентов.

АЛГОРИТМЫ КОНТРОЛЯ КООРДИНАТ ИСТОЧНИКА ИЗЛУЧЕНИЯ НА ФОТОЧУВСТВИТЕЛЬНОЙ ПОВЕРХНОСТИ МАТРИЦЫ

Рисунок 5. Погрешность измерений координат X_c. Центроидальный алгоритм со сложением координат источника излучения в нескольких строках с учетом весовых коэффициентов.

Полное использование информации видеосигнала от источника излучения размером 5x5 ячеек с применением нового алгоритма «Центроидальный алгоритм со сложением координат источника излучения в нескольких строках с учетом весовых коэффициентов» позволяет повысить точность измерений в 1,5 - 2 раза. Особенно эффективно применение новых алгоритмов при отношениях сигнал/шум менее 25. Алгоритмические погрешности вычислений, погрешности неравномерности фоточувствительности ячеек. геометрический шум, расфокусировка изображения также будут оказывать меньшее влияние на точность измерения координат источника излучения С новыми алгоритмами.

При изображении источника излучения на фоточувствительной поверхности ПЗС размером 5х5 ячеек с отношением сигнал/шум 100 чувствительность к перемещениям составит 5,4 нм для одного цветового канала изображения.

Использование трех каналов цветного изображения R, G, B позволит еще увеличить чувствительность к перемещениям в этих же условиях до 3,12 нм.

Применение новых методик улучшения работы алгоритмов вычисления координат также целесообразно при аппроксимации видеосигнала гауссоидой, парабалоидой и другими функциями.