ФОТОХИМИЧЕСКИЕ ПРЕВРАЩЕНИЯ В СИСТЕМАХ АЗИД ТАЛЛИЯ – ОКСИД МЕДИ (I)

Л.И. Шурыгина, Л.Н. Бугерко, Т.М. Заиконникова

Создание систем $TIN_3(A) - Cu_2O$, предварительная обработка их светом $\lambda = 365$ нм наряду с увеличением скорости фотолиза и фототока в области собственного поглощения $TIN_3(A)$ приводит к расширению области спектральной чувствительности азида таллия. Оценены константы скорости фотолиза. В результате измерений вольтамперных характеристик, контактной разности потенциалов, контактной фото-ЭДС построена диаграмма энергетических зон и предложена модель фотолиза систем $TIN_3(A) - Cu_2O$, включающая генерацию, рекомбинацию и перераспределение неравновесных носителей в контактном поле, формирование наноразмерных систем $TIN_3(A) - Pb$ (продукт фотолиза) и образование азота.

Ключевые слова: гетеросистемы, азид таллия, оксид меди (I), фотолиз

ВВЕДЕНИЕ

Изучение темновых и фотопроцессов в гетеросистемах на основе азида таллия [1-14], один из компонентов которых – азид таллия, сочетая достоинства модельных соединений (относительно простой состав и структура, достаточная фотохимическая чувствительность, продукты фотолиза – таллий и азот – не взаимодействуют друг с другом, значительный внутренний фотоэффект), используется в технике – актуально как в научном, так и практическом отношении.

ОБЪЕКТЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Азид таллия марки А (TIN₃(A)) [10-14] синтезировали методом двухструйной кристаллизации: в 0,2 н водный раствор нитрата таллия (квалификации х.ч.) по каплям приливали 0,2 н водный раствор дважды перекристаллизованного технического азида натрия (скорость сливания 2 капли в секунду, тсинте-_{за} = 30 минут, T = 293 К, pH = 3). Образцы для исследований готовили тщательным перемешиванием (в сухом состоянии и в этиловом спирте) соответствующих навесок TIN₃(A) и оксида меди (1) с последующей сушкой и прессованием при давлении 1 \times 10³ кг см⁻² таблеток диаметром 0.5-1см. При сопоставлении результатов и построении кривых спектрального распределения скорости фотолиза (V_{ϕ}) , фототока (i_{ϕ}) и фото-ЭДС (U_{ϕ}) пропускание света через Cu₂O учитывалось.

Измерения V_Ф, і_Ф и U_Ф образцов проводили на экспериментальных комплексах обеспечивающих вакуум 1×10⁻⁵ Па. Источниками света служили ртутная (ДРТ-250) и ксеноновая (ДКсШ-1000) лампы. Для выделения требуемого участка спектра применяли монохроматоры МДР-2, МСД-1 и набор светофильтров. Актинометрию источников света проводили с помощью радиационного термоэлемента РТ-0589. В качестве датчика при измерении V_Ф использовали лампу РМО-4С омегатронного масс-спектрометра ИПДО-1, настроенного на частоту регистрации азота [6]. Измерения і_ф и U_ф проводили на установке, включающей электрометрический вольтметр В7-30 либо электрометр TR-1501 [15]. Спектры диффузного отражения (ДО) измеряли на спектрофотометре СФ-4А с приставкой ПДО-1 при давлении Р ~ 10⁻⁴ Па, используя устройство [16], при давлении 101,3 кПа на спектрофотометре Specord-M40 с приставкой на отражение 8⁰d [7]. Контактную разность потенциалов (КРП) между азидом таллия, Cu₂O и электродом сравнения из платины измеряли, используя модифицированный метод Кельвина [17].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В результате анализа кинетических и спектральных закономерностей фотолиза TIN₃(A) и систем TIN₃(A) – Cu₂O было установлено, что наряду с увеличением добавкой оксида меди (I) V_ф в собственной области поглощения TIN₃(A), на кривых спектрального распределения V_{d} систем TIN₃(A) – Cu₂O (построенных по стационарным участкам (II) кинетических кривых V_ф рис. 1) появляется новая длинноволновая область спектральной чувствительности, соответствующая области поглощения и фотоэлектрической чувствительности Cu₂O. В полях интенсивного (I> 1.10^{14} квант см⁻²с⁻¹) облучения систем TIN₃(A) - Cu₂O светом из области края собственного поглощения азида таллия (λ =365 нм) на кинетических кривых V_ф проявляются характер-ПОЛЗУНОВСКИЙ ВЕСТНИК № 3 2010 ные для TIN₃(A) [10–14] участки: нестационарный (I), стационарный (II), возрастания (III) и насыщения (IV).

Рисунок 1. Кинетические кривые скорости фотолиза систем: $TIN_3(A) - Cu_2O$ при $\lambda =$ 365 нм и I = 3,17 × 10¹⁵ квант см⁻²·с⁻¹ до (1) и после прерывания освещения на I (2), II (3), IV (4) участках

По мере уменьшения интенсивности падающего света ($I < 1.10^{14}$ квант см⁻² с⁻¹) наблюдается уменьшение $V_{\boldsymbol{\varphi}},$ а также увеличение продолжительности участков кинетических кривых V_ф. Продолжительное (более одного месяца) хранение исследуемых систем в «атмосферных» условиях, предварительные тепловая и световая обработки, а также обработка азида таллия (до создания систем) в восстановительной среде уменьшают начальный максимум на кинетических кривых V_d. В качестве примера на рис. 1 приведены результаты исследований влияния предварительной обработки образцов TIN₃(A) – Cu₂O светом из области собственного поглощения азида таллия. Видно (рис. 1, кривые 2 и 3), что повторное (после прерывания света на I и II участках) облучение образцов не приводит к заметному изменению значений V_ф на II, III и IV участках кинетических кривых V_ф. После предварительной световой обработки образцов до IV участка V_ф монотонно возрастает до постоянного значения и соответствует значениям V_ф на участке IV не обработанных светом образцов (рис. 1, кривые 1 и 4). Более продолжительное освещение образцов приводит к снижению V_Ф. После прекращения облучения систем TIN₃(A) - Cu₂O на разных участках кинетических кривых V_ф наблюдается участок (V) постгазовыделения (рис. 1). Видно, что кривые постгазовыделения состоят из двух участков - "быстрого" и "медленного". С увеличением времени экспонирования и интенсивности падающего света продолжи-

ПОЛЗУНОВСКИЙ ВЕСТНИК № 3 2010

тельность постгазовыделения возрастает за счет увеличения временного интервала «медленной» составляющей, а с понижением температуры участок постгазовыделения со-кращается за счет уменьшения временного интервала «медленной» составляющей. Анаморфозы постгазовыделения для систем TIN₃(A) – Cu₂O при T=293K, построенные в координатах $InC_{N2}=f(\tau)$, независимо от времени предварительного экспонирования, интенсивности падающего света – линейны. В табл. 1 приведены константы скорости (k) процесса ответственного за постгазовыделение.

Таблица 1

Константы скорости (*k* × 10², с⁻¹) процесса ответственного за постгазовыделение (участок V) после прерывания освещения на I, II и IV участках кинетической кривой V_Ф

образец	_	=	IV
TIN ₃ (A)	2,16±0,11	1,60±0,08	2,70±0,14
TIN ₃ (A) – Cu ₂ O	1.13±0.07	1.80±0.09	2.40±0.12

Длинноволновый край ДО TIN₃(A) [8–10] и TIN₃(A) – Cu₂O составляет λ =440 нм. Формирование систем TIN₃(A) – Cu₂O и обработка их светом из области λ =365 нм приводит к увеличению ДО TIN₃(A) в диапазоне 440–850 нм. При временах облучения, соответствующих реализации I и II участков на кинетических кривых V_ф, на спектральных кривых ДО проявляются полосы отражения с максимумами при $\lambda \approx$ 430-500 нм и λ = 585 нм. Дальнейшее увеличение времени световой обработки до участка IV приводит к уширению полос и смещению максимумов в длинноволновую область спектра.

Были сопоставлены кинетические кривые зависимостей изменения количества фотолитического таллия (Сме), рассчитанные по результатам измерений V_ф при различных интенсивностях падающего света, со значениями площадей (S), соответствующих изменению ДО систем TIN₃(A) – Cu₂O в процессе облучения (рис. 2). Установленное совпадение зависимостей, а также результаты представленные в [8-10] свидетельствуют о том, что наблюдаемые в результате облучения образцов изменения на спектральных кривых ДО систем TIN₃(A) – Cu₂O обусловлены образованием таллия (продукта фотолиза азида таллия), а максимумы – формированием частиц таллия соответствующих размеров. Причём, твёрдофазный (таллий) и газообразный (азот) продукты фотолиза систем TIN₃(A) -

Си₂О образуются в стехиометрическом соотношении и, в основном, на поверхности образцов. В табл. 2 приведены константы скорости фотолиза систем TIN₃(A) – Си₂О оценённые по тангенсу угла наклона зависимостей InS = $f(\tau)$ и InC_{Me} = $f(\tau)$. Из табл. 2 следует, что константы V_ф азида таллия и систем TIN₃(A) – Си₂О практически совпадают.

Рисунок 2. Зависимость количества фотолитического таллия (N_{TI}) и площадей (S), соответствующих изменению ДО систем TIN₃(A) -Cu₂O от интенсивности падающего света, $\lambda = 365$ нм (I, квант·см⁻²·с⁻¹): 1,27·10¹⁵ (1); 6,34·10¹⁴ (2); 3,17·10¹⁴ (3); 1,8·10¹⁴ (4); 8·10¹³ (5) (• – данные масс-спектрометрии (N_{TI}); * – данные ДО (S)).

Таблица 2

Константы скорости фотолиза TIN₃(A) и систем TIN₃(A) – Cu₂O, рассчитанные по кинетическим кривым V_ф (k_{1ф}) и спектрам ДО (k_{1ДO}). Интенсивность падающего света (квант см⁻²c⁻¹)

I×10 ⁻¹⁵	TIN ₃ (A)		$TIN_3(A) - Cu_2O$	
	$k_{1\Phi} \times 10^2$	<i>k</i> 1до×10 ²	$k_{1\Phi} \times 10^2$	<i>k</i> 1до×10 ²
3.17	6.2±0,4	6.0±0,4	3.3±0.2	2.8±0.2

Для выяснения энергетического строения контактов TIN₃(A) – Cu₂O и причин, вызывающих наблюдаемые изменения добавкой Cu₂O V_ф TIN₃(A) в разных спектральных областях, были измерены вольт – амперные характеристики (BAX), і_ф и U_ф систем TIN₃(A) – Cu₂O, а также измерены значения КРП между TIN₃(A), Cu₂O и электродом из платины (табл. 3). В спектральных областях, отвечающих областям поглощения и фотоэлектрической чувствительности TIN₃(A) и Cu₂O, были обнаружены заметные і_ф и U_ф. Установлено, что кривые спектрального распределения U_ф, V_ф и і_ф коррелируют, а знак U_ф положительный со стороны TIN₃(A).

Таблица 3

Контактная разность потенциалов (В) между TIN₃(A), Cu₂O и относительным платиновым электродом при *T*=293 К

Образец	Р=1·10 ⁵ , Па	Р=1·10 ⁻⁵ , Па
TIN ₃ (A)	+0,70	+0,50
Cu ₂ O	+ 0.31	+ 0.28

Представленные в настоящей работе и ранее [10 – 18] результаты исследований темновых и фотопроцессов в азиде таллия и системах на его основе свидетельствуют о контактной, фотоэлектрической природе наблюдаемых эффектов изменения добавкой Cu₂O V_ф азида таллия в разных спектральных областях.

Согласно соотношениям работ выхода контактирующих партнеров (табл. 3) [11–14,17–19] при сближении изолированных $TIN_3(A)$ и Cu_2O следовало ожидать эффектов «выпрямления» на ВАХ, а также одинакового по всему спектру, но отрицательного со стороны $TIN_3(A)$ знака U_{ϕ} .

Рисунок 3. Диаграмма энергетических зон системы TIN₃(A) – Cu₂O, E_v – уровень потолка валентной зоны, E_c – уровень дна зоны проводимости, E_F – уровень Ферми, E₀ – уровень вакуума, T⁺ – центр рекомбинации.

Было установлено, что заметные эффекты «выпрямления» на ВАХ систем $TIN_3(A)$ – Cu_2O отсутствуют, а знак U_{Φ} со стороны $TIN_3(A)$ для систем $TIN_3(A) - Cu_2O$ – положительный и не соответствует ожидаемому из соотношений работ выхода контактирующих партнеров. Отмеченные факты, а также результаты измерений КРП (табл. 3) [17], внешней фотоэмиссии [19], конденсаторной фото-ЭДС [20], V_{Φ} , i_{Φ} и U_{Φ} TIN₃(A), систем TIN₃(A) – Cu_2O свидетельствуют о значительной концентрации и решающей роли собственных

ПОЛЗУНОВСКИЙ ВЕСТНИК № 3 2010

поверхностных электронных состояний (T_{Π}^{+} ,) у азида таллия и поверхностных электронных состояний контакта (T_{K}) азида таллия с оксидом меди (1) в процессах перераспределения носителей заряда на контакте в темноте и при их облучении. При создании контактов TIN₃(A) с Cu₂O происходит процесс обмена равновесными носителями зарядов до тех пор, пока в системе не установится термодинамическое равновесие (рисунок 3).

При облучении систем TIN₃(A) – Cu₂O светом из области собственного поглощения азида таллия имеет место интенсивная генерация электрон – дырочных пар в азиде таллия и полупроводнике (рис. 3, переходы 1, 2)

$$N_3 \rightarrow p + e$$
.

Так как квантовый выход фотолиза систем TIN₃(A) – Cu₂O при экспозиции $\tau \le 60$ с 0,002–0,010, то часть генерированных носителей заряда рекомбинирует (рис. 3, переходы 3)

$$T^+ + e \rightarrow T^0 + p \rightarrow T^+,$$

где T⁺ - центр рекомбинации.

Другая часть перераспределяется в контактном поле. Неравновесные электроны из зоны проводимости азида таллия и неравновесные дырки из валентной зоны Cu₂O переходят на уровни T_п⁺, T_к.

ходят на уровни T_{Π}^{+}, T_{K}^{-} . $T_{\Pi}^{+} + e \rightarrow T_{\Pi}^{0}, T_{K}^{-} + p \rightarrow T_{K}^{0}$

Осевшие на уровнях T_п⁺, T_к⁻ электроны и дырки могут рекомбинировать или обмениваться с близлежащими зонами полупроводника и азида таллия.

При экспонировании систем TIN₃(A) -Си₂О светом из области поглощения Си₂О имеет место интенсивная генерация электрон - дырочных пар в полупроводнике (рис. 3, переход 2). Генерированные в ОПЗ Си₂О неравновесные носители заряда перераспределяются в контактном поле с переходом дырок из валентной зоны полупроводника на уровни Тк. Реализуемый знак U_ф со стороны азида таллия свидетельствует о возможности осуществления переходов. Одновременно с отмеченными переходами, которые приводят к формированию U_ф и смещению энергетических уровней у контактирующих партнеров имеют место потоки равновесных носителей заряда. В итоге, концентрация дырок в ОПЗ азида таллия (в контакте с Cu₂O) будет изменяться по сравнению с концентрацией их в индивидуальном азиде.

Результирующее изменение концентрации дырок в ОПЗ азида таллия приведет к соответствующему увеличению і_ф и V_ф в собственной области поглощения азида и появлению і_ф и фотолиза в длинноволновой области спектра, соответствующей области по-

ПОЛЗУНОВСКИЙ ВЕСТНИК № 3 2010

глощения и фотоэлектрической чувствительности Cu₂O, по принимаемым для фотолиза азидов тяжелых металлов реакциям образования азота [21]:

р + V_K⁻ \rightarrow V_K⁰ + p \rightarrow V_K⁺ \rightarrow 3 N₂ + 2 V_A⁺ + V_K⁻, где V_K⁻ и V_A⁺ – катионная и анионная вакансии.

При фотолизе систем TIN₃(A) – Cu₂O одновременно с выделением азота образуется и фотолитический таллий. Формирование частиц фотолитического таллия, по нашему мнению, происходит с участием T_{Π}^{+} , T_{K}^{-} и подвижных межузельных катионов таллия (азид таллия разупорядочен по Френкелю [20])

$$T_{K}^{0} + TI^{\dagger} \rightarrow (T_{K}TI)^{\dagger} + e \rightarrow ... \rightarrow (T_{K}TI_{m})^{0},$$

$$T_{D}^{0} + TI^{\dagger} \rightarrow (T_{D}TI)^{\dagger} + e \rightarrow ... \rightarrow (T_{D}TI_{m})^{0}.$$

Уменьшение V_ф на начальном участке кинетической кривой в процессе и после предварительного экспонирования образцов (рис. 1) подтверждает необратимый расход поверхностных центров. В процессе роста частиц фотолитического металла формируются микрогетерогенные системы азид таллия – таллий (продукт фотолиза) [11–14]. При воздействии на системы TIN₃(A) – TI светом из области собственного поглощения азида таллия генерированные в ОПЗ азида таллия пары носителей перераспределяются в контактном поле, сформированном из-за несоответствия между термоэлектронными работами выхода азида таллия и фотолитического таллия, с переходом неравновесных электронов из зоны проводимости TIN₃(A) в таллий. Одновременно имеет место фотоэмиссия дырок из таллия в валентную зону азида таллия. Эти процессы, во-первых, приводят к возрастанию концентрации дырок и, как следствие, к увеличению V_ф (участок III); вовторых, могут стимулировать диффузию межузельных ионов таллия к растущим частицам и, как следствие, увеличивать их размеры

$$(\mathsf{T}_{\mathsf{K}}\mathsf{T}\mathsf{I}_{\mathsf{m}})^{\mathsf{0}} + \mathsf{T}\mathsf{I}^{*} \to (\mathsf{T}_{\mathsf{K}}\mathsf{T}\mathsf{I}_{\mathsf{m}+1})^{*} + \mathsf{e} \to (\mathsf{T}_{\mathsf{K}}\mathsf{T}\mathsf{I}_{\mathsf{m}+1})^{\mathsf{0}} (\mathsf{T}_{\mathsf{\Pi}}\mathsf{T}\mathsf{I}_{\mathsf{m}})^{\mathsf{0}} + \mathsf{T}\mathsf{I}^{*} \to (\mathsf{T}_{\mathsf{\Pi}}\mathsf{T}\mathsf{I}_{\mathsf{m}+1})^{*} + \mathsf{e} \to (\mathsf{T}_{\mathsf{\Pi}}\mathsf{T}\mathsf{I}_{\mathsf{m}+1})^{\mathsf{0}}.$$

В итоге будет расти концентрация дырок в ОПЗ азида таллия и V_ф систем TIN₃(A) – Cu₂O (рис. 1, участок III).

СПИСОК ЛИТЕРАТУРЫ

1. Robbilard J.J. // J. Photog. Science. 1971. V. 19. P. 25 – 37.

2. Акимов И.А., Черкасов Ю.А., Черкашин М.И. Сенсибилизированный фотоэффект. М.: Наука. 1980. 384 с.

3. Индутный И.З., Костышин М.Т., Касярум О.П., Минько В.И., Михайловская Е.В., Романенко П.Ф. Фотостимулированные взаимодействия в структурах металл – полупроводник. Киев: Наукова думка, 1992. 240 с.

4. Суровой Э.П., Сирик С.М., Бугерко Л.Н. // Хим. физика. 2000. Т. 19. № 8. С. 20–25.

5. Суровой Э.П., Сирик С.М., Бугерко Л.Н. // Журн. физ. химии. 2000. Т. 74. № 5. С. 927–933.

6. Суровой Э.П., Бугерко Л.Н. // Хим. физика. 2002. Т. 21. № 7. С. 74–78.

7. Суровой Э.П., Сирик С.М., Захаров Ю.А. и др. // Журн. науч. и прикл. фотографии. 2002. Т. 47. № 5. С. 19–27.

8. Суровой Э.П., Бугерко Л.Н., Расматова С.В. // Журн. физ. химии. 2005. Т. 79. № 6. С. 1124 – 1128. 9. Суровой Э.П., Бугерко Л.Н., Расматова С.В. //

Журн. физ. химии. 2006. Т. 80. № 7. С. 1308–1313. 10. Власов А.П., Суровой Э.П. // Журн. физ. химии.

1991. T. 65. № 6. C. 1465–1469.

11. Суровой Э.П., Захаров Ю.А., Бугерко и др. // Химия высоких энергий. 1999. Т. 33. № 5. С. 387–390.

12. Суровой Э.П., Шурыгина Л.И., Бугерко Л.Н. // Хим. физика. 2001. Т. 20. № 12. С. 15–22.

13. Суровой Э.П., Шурыгина Л.И., Бугерко Л.Н. // Хим. физика. 2003. Т. 22. № 9. С. 24–28.

14. Суровой Э.П., Шурыгина Л.И., Бугерко Л.Н. // Журн. физ. химии. 2009. Т. 83. № 7. С. 784–790. 15. Суровой Э.П., Бугерко Л.Н., Захаров Ю.А. и др. // Материаловедение. 2002. № 9. С. 27–33.

16. А.с. 1325332 СССР. МКИ G01N 21/55. Устройство для измерения спектров отражения в вакууме / А.И. Турова, Г.П. Адушев, Э.П. Суровой и др. Заявлено 10.11.1985; Опубл. 24.07.1987, Бюл. № 27. – 5 с.: ил.

17. Суровой Э.П., И.В. Титов, Бугерко Л.Н. // Материаловедение. 2005. № 7. С. 15 – 20.

18. Суровой Э.П., Борисова Н.В. // Журн. физ. химии. 2010. Т. 84. № 2. С. 307 – 313.

19. Колесников Л.В. Спектры энергетических состояний и некоторые особенности реакций разложения азидов тяжелых металлов: Автореф. дис. ... канд. хим. наук. Минск: БГУ, 1978. 21 с.

20. Гаврищенко Ю.В. Фотолиз азидов тяжелых металлов и оптическая сенсибилизация этого процесса органическими красителями. Автореф. дис. ... канд. хим. наук. – Томск, 1969. – 20 с.

21. Кригер В.Г. Кинетика и механизмы реакций твёрдофазного разложения азидов тяжёлых металлов: Автореф. дис. ... докт. физ.-мат. наук. Кемерово: КемГУ, 2002. 39с.

22. Мейкляр Г.В. Физические процессы при образовании скрытого фотографического изображения. М.: Наука. 1972. 399 с.

23. Evans B.L., Joffe A.D., Grey P. // Chem. Rev. 1959. V. 59. № 4. P. 519 – 568.

ЗАКОНОМЕРНОСТИ ФОРМИРОВАНИЯ ПРОДУКТОВ ФОТОЛИЗА АЗИДА СВИНЦА

Л.Н. Бугерко, С.В. Расматова, Г.О. Еремеева

Предварительное облучение азида свинца светом (λ =365 нм, I=2×10¹⁵ квант см⁻² с⁻¹) в вакууме (1×10⁻⁵ Па) наряду с увеличением скорости фотолиза и фототока приводит к появлению новой (до λ =600нм) области чувствительности. Определены константы скорости фотолиза азида свинца. Показано, что при фотолизе азида свинца формируются микрогетерогенные системы PbN₆(Ам) – Pb (продукт фотолиза). Лимитирующей стадией фотолиза - диффузия анионных вакансий к нейтральному центру Pb_n⁰

Ключевые слова: азид свинца, микрогетерогенные системы, фотолиз

ВВЕДЕНИЕ

Исследование влияния твердофазных продуктов на фотолиз азидов серебра и таллия [1-9], а также изучение фотолиза гетеросистем азид-металл (азид-полупроводник) [10-17] позволили существенно продвинуться в направлении понимания механизма фотолиза неорганических азидов. В работе представлены результаты исследований закономерностей образования продуктов в процессе фотолиза азида свинца в зависимости от интенсивности падающего света.

ОБЪЕКТЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Азид свинца марки Ам (PbN₆(Aм)) синтезировали методом двухструйной кристаллизации, медленным (в течение 60 минут) сливанием «струя в струю» водных 0,2 н растворов дважды перекристаллизованного технического азида натрия и нитрата свинца (квалификации х.ч.) при pH 3 и T = 293К [17]. Образцы для исследований готовили прессованием таблеток PbN₆(Aм) массой 150 мг при давлении 1·10⁻³ кг·см⁻², либо путем нанесения 150 мг навесок PbN₆(Aм) на кварцевую пла-

ПОЛЗУНОВСКИЙ ВЕСТНИК № 3 2010