экспонирования образцов (рис. 2) подтверждает необратимый расход поверхностных центров. В процессе роста частиц фотолитического металла формируются микрогетерогенные системы PbN₆(Аб)–Pb (продукт фотолиза) [11, 14]. Генерированные в ОПЗ азида свинца пары носителей перераспределяются в контактном поле, сформированном из-за несоответствия между термоэлектронными работами выхода азида свинца и фотолитического свинца [11, 13, 14], с переходом неравновесных электронов из зоны проводимости PbN₆(Аб) в свинец. Одновременно имеет место фотоэмиссия дырок из свинца в валентную зону азида свинца. Эти процессы могут стимулировать диффузию анионных вакансий к растущим частицам [11, 14]. В процессе фотолиза граница раздела контактов PbN₆(Аб)-CdTe покрывается слоем фотолитического свинца и при больших степенях превращения фотолиз в этих системах будет в значительной степени определяться фотоэлектрическими процессами на границе PbN₆(Аб)-Pb(продукт фотолиза)–CdTe.

СПИСОК ЛИТЕРАТУРЫ

1. Robbilard J.J. // J. Photog. Science. 1971. V. 19. P. 25

2. Levy B., Lindsey M. // Phot. Sci. and Eng. 1973. V. 17. № 2. P. 135 – 141.

3. Акимов И.А., Черкасов Ю.А., Черкашин М.И. Сенсибилизированный фотоэффект. - М.: Наука, 1980, с. 384

4. Индутный И.З., Костышин М.Т., Касярум О.П., Минько В.И., Михайловская Е.В., Романенко П.Ф. Фотостимулированные взаимодействия в структурах металл – полупроводник. - Киев: Наукова думка, 1992, 240 с.

5. Суровой Э.П., Сирик С.М., Бугерко Л.Н. // Журнал физической химии. 2000. Т. 74. № 5. С. 927933.

6. Суровой Э.П., Сирик С.М., Захаров Ю.А., Бугерко Л.Н. // Журн. науч. и прикл. фотографии. 2002. Т. 47. № 5. С. 19 – 27.

7. Суровой Э.П., Бугерко Л.Н. // Химическая физика. 2002. Т. 21. № 7. С. 7478.

8. Суровой Э.П., Бугерко Л.Н. и др. // Материаловедение. 2002. № 9. С. 2733.

9. Суровой Э. П., Шурыгина Л. И., Бугерко Л. Н. // Химическая физика. 2003. Т. 22. № 6. С. 17-22.

10. Боуден Ф., Иоффе А. Быстрые реакции в твердых веществах. – М.: Иностранная литература. 1962. – 243 с.

11. Суровой Э.П., Бугерко Л.Н., Расматова С.В. // Журн. физ. химии. 2004. Т. 78. № 4. С. 1.

12. А.с. 1325332 СССР. МКИ G01N 21/55. Устройство для измерения спектров отражения в вакууме / А.И. Турова, Г.П. Адушев, Э.П. Суровой и др. Заявлено 10.11.1985; Опубл. 24.07.1987, Бюл. № 27. – 5 с.: ил.

13. Суровой Э.П., Захаров Ю.А., Бугерко Л.Н. // Неорган. материалы. 1996. Т. 32. № 2. С. 162.

14. Суровой Э.П., Захаров Ю.А., Бугерко Л.Н. и др. // Журн. научн. и прикл. фотографии. 2001. Т. 46. № 3. С. 1.

15. Суровой Э.П., Бугерко Л.Н., Захаров Ю.А. и др. // Материаловедение. 2003. № 7. С. 18.

16. Кригер В.Г. Кинетика и механизмы реакций твёрдофазного разложения азидов тяжёлых металлов: Автореф. дис. ... докт. физ.-мат. наук. Кемерово: КемГУ, 2002. 39с.

17. Захаров Ю.А., Савельев Г.Г., Шечков Г.Т. // Изв. вузов. Химия и хим. технология. 1967. № 11. С. 1191.

ФОТОСТИМУЛИРОВАННЫЕ ПРЕВРАЩЕНИЯ В АЗИДЕ СЕРЕБРА

С.М. Сирик, Г.О. Еремеева

Было установлено, что при экспонировании азида серебра светом λ <250 нм выделяется газообразный азот и нитрид серебра, а при облучении светом λ =365 нм продуктами фотолиза являются газообразный азот и металлическое серебро. Изучены кинетические закономерности образования фотолитического серебра и азота при воздействии на AgN₃(A₁) света λ =365 нм в интервале интенсивностей 3.77·10¹⁴ ... 4.15·10¹⁵ квант·см⁻¹·с⁻¹.

Ключевые слова: фотолиз, азид серебра.

ОБЪЕКТЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Азид серебра марки А₁ синтезировали методом двухструйной кристаллизации (в 0.2 н раствор нитрата серебра по каплям приливали 0.2 н раствор азида натрия, скорость

сливания 2 капли в минуту, т_{синтеза}=30 минут, T=293 K, pH=3). Навески азида серебра массой 125 мг помещали в чашечки диаметром 1 см, тщательно диспергировали в воде, сушили в темноте при комнатной температуре. Количество фотолитического серебра опре-

ПОЛЗУНОВСКИЙ ВЕСТНИК № 4-1 2011

деляли методами инверсионной вольтамперометрии (ИВА) (чувствительность метода 10⁻⁸ М/л [6-9]), экстракционной фотометрии с дитизоном (ЭФ) (чувствительность метода 10⁻⁵ М/л [10]) и масс-спектрометрии. Определение серебра методами ИВА и ЭФ включает следующие стадии:

1. экспонирование образцов светом лампы ДРТ-250 из области края собственного поглощения AgN₃ (λ=365нм);

2. растворение неразложившейся матрицы AgN_3 в 4н раствор тиосульфата натрия. Раствор тиосульфата натрия брался в избытке, чтобы предотвратить образование осадка $Ag_2S_2O_3$, поскольку последний растворяется в избытке тиосульфата натрия с образованием комплексных ионов $[AgS_2O_3]^7$, $[Ag(S_2O_3)_3]^{5^-}$ и $[Ag(S_2O_3)_2]^{5^-}$;

3. отделение от раствора осадка серебра центрифугированием на центрифуге типа 3 10 при скорости вращения ротора 6000 об/мин в течение 5 мин и промывание осадка деионизованной водой с последующим центрифугированием по 5 мин;

4. растворение серебра в концентрированной азотной кислоте.

Для определения серебра методом инверсионной вольтамперометрии использовалась электродная система - ЭСИ (электродная система Иванова Ю.И. [11]) и полярограф ПА-2.

Электролитическое накопление серебра из фонового электролита (10 мл 0.2 н азотной кислоты), содержащего аликвоты исследуемого раствора, проводили при потенциале электролиза Фал = -0.7 В. Время электролиза т = 3 мин. Потенциал анодного пика серебра ϕ_n = - 0.1 В. В выбранных условиях была снята калибровочная зависимость тока анодного пика от концентрации ионов серебра в растворе. В пределах концентрации ионов серебра 2·10⁻⁸ ... 4·10⁻⁵ М/л зависимость тока анодного пика от концентрации ионов серебра имеет линейный характер. Поэтому, определение концентрации ионов серебра в реальном объекте проводили методом добавок. В качестве добавок использовали стандартные растворы нитрата серебра с концентрациями 10⁻², 10⁻³, 10⁻⁴ М. Расчет количества серебра в пробе проводили по формуле:

 $v = C_x \cdot V_{o b u} \cdot V_{n p} / (V_{a n} \cdot 1000),$

где C_x - концентрация ионов серебра в электролитической ячейке (М/л),

 $C_x = h / (H - h) \cdot C_D \cdot V_D / V_{oбщ},$

h, H - высоты пиков на вольтамперных кривых до (h) и после введения добавки (H) стандартного раствора (мм) соответственно; С_д, V_д - концентрация и объем добавляемого ПОЛЗУНОВСКИЙ ВЕСТНИК № 4-1 2011 стандартного раствора; V_{общ} - объем раствора в электролитической ячейке (мл); V_{пр} - объем пробы после растворения в растворе HNO₃ (мл); V_{ал} - объем аликвоты исследуемого раствора (мл).

Для определения количества фотолитисеребра экстракционноческого фотометрическим методом с дитизоном воспользовались методикой предложенной в [10]. К 2мл исследуемого раствора добавляли 2мл раствора дитизона в CCI₄ (концентрация раствора 0.01 г/л), встряхивали в делительной воронке 30 с, после отстаивания и разделения фаз органическую фазу сливали в кювету и измеряли спектр поглощения. Вновь сливали органическую и неорганическую фазы, добавляли еще 1 мл раствора дитизона в CCl₄ и повторяли выше перечисленные операции до тех пор, пока оптическая плотность в максимуме поглощения при 462 нм не переставала изменятся. Концентрацию ионов серебра в реальном объекте определяли по калибровочной кривой зависимости изменения оптической плотности дитизона (ΔD) от концентрации ионов серебра (САд+). Расчет количества серебра (v) в пробе проводили по формуле:

$v = C_{Ag^+} V/1000,$

где V - объем исследуемого раствора (мл). Для приготовления стандартных растворов использовали реактивы марки «х.ч.» и «ч. д.а.».

Измерения кинетических кривых скорости фотолиза (V_{ϕ}) проводили в высоком ва-кууме (P=1·10⁻⁵ Па). В качестве датчика использовали лампу РМО-4С омегатронного масс-спектрометра ИПДО-1, настроенного на частоту регистрации конечного продукта фотолиза азида серебра - азота. По кинетическим кривым фотолиза определили количество выделившегося азота в зависимости от времени облучения, рассчитав площади под определенными участками кривых S_i. Общее количество выделившегося азота равно S=S₁+S₂+S₃+...+S_n. Используя уравнение разложения азида серебра 2AgN₃=2Ag+3N₂ рассчитывали количество образовавшегося серебра в процессе облучения азида: $N_{Ag}=N_{N_2}$ / 1.5

Было установлено [1-5], что выделяющиеся при разложении твердофазные продукты оказывают существенное влияние на фотохимические и фотоэлектрические свойства азидов тяжелых металлов. Исследование автокаталитического и сенсибилизирующего влияния твердофазных продуктов на фотолиз азидов серебра и таллия [6-9], а также параллельное изучение фотолиза и электрофизических свойств гетеросистем азид-металл (азид-полупроводник) [10-17] позволили существенно продвинуться в направлении понимания механизма фотолиза неорганических азидов при глубоких степенях превращения. В настоящей работе представлены результаты исследований кинетических и спектральных закономерностей образования продуктов в процессе фотолиза азида серебра.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На рисунке 1 представлены кинетические кривые $V_{\varphi}\ AgN_3\ (A_1)$ в зависимости от интенсивности падающего света при $\lambda{=}365\text{hm}.$ На кинетической кривой фотолиза $AgN_3(A_1)$ (рис. 1) наблюдается несколько участков.

Рисунок 1. Зависимость скорости фотолиза AgN₃(A₁) от интенсивности падающего света (I, квант·см⁻²·c⁻¹) λ =365нм: 1 - 3.77·10¹⁴, 2 - 3.17·10¹⁵, 3 - 3.77·10¹⁵, 4 - 4.15·10¹⁵, 5 -рассчитанная кривая скорости образования фотолитического серебра.

В начальный момент облучения (тобл. <10 с) V_ф быстро достигнув максимального значения, уменьшается (начальный участок I) и принимает постоянное значение (тобл≈2 мин, стационарный участок II), затем скорость фотолиза увеличивается до определенной величины (тобл. <30 мин, участок ускорения III) и остается неизменной (участок насыщения IV), при дальнейшем освещении скорость фотолиза постепенно уменьшается. После прекращения экспонирования наблюдается участок темнового пост - газовыделения (V). По мере увеличения интенсивности падающего света V_ф на всех участках кинетической кривой увеличивается, сокращается продолжительность участков. В таблице 1 представлены результаты определения числа молей серебра (v) методами масс - спектрометрии, ИВА и ЭФ. Из анализа результатов, представленных в таблице 1 следует, что по мере увеличения интенсивности падающего света и времени освещения количество серебра возрастает.

В результате обработке кривых V_{ϕ} (рис.1) и данных, представленных в таблице 1, в координатах ln_V от τ определили значения констант скорости фотолиза (k_{ϕ} и $k_{\text{ИВА}}$) (таблица 2). Из таблицы следует, что значения k_{ϕ} и $k_{\text{ИВА}}$ удовлетворительно совпадают.

Согласно существующим в настоящее время представлениям [1,4,5,12-14], фотолиз AgN₃ при воздействии света из области собственного поглощения идет в несколько стадий:

1. Генерация электрон-дырочных пар в азиде серебра:

$$N_3^- + hv \rightarrow p + e;$$

2. Рекомбинация неравновесных носителей заряда:

$$T^+ + e \rightarrow T^0 + p \rightarrow T^+$$

где T⁺ - центр рекомбинации;

3. Переход электронов на уровни поверхностных электронных состояний [5]:

 $T_n^+ + e \rightarrow T_n^0$,

которые по нашему мнению являются центрами образования частиц серебра;

4. Образование конечных продуктов фотолиза азота и серебра (4)

$$p + V_k \rightarrow pV_k + p \rightarrow 2pV_{\kappa} \rightarrow 3N_2 + 2V_a + V_k$$

 $T_n^{\circ} + Ag^{-} \rightarrow (T_nAg)^{-} \rightarrow ... \rightarrow (Ag_m),$

где V_a и V_k анионная и катионная вакансии. Рост частиц серебра при фотолизе AgN₃(A₁), также как и при фотолизе галогенидов серебра [16] можно представить как захват электрона растущей частицей серебра, имеющей заряд + или 0 (Ag_m⁺ и Ag_m⁰):

$$e + Ag_m^+ \rightarrow Ag_m^0 + e \rightarrow Ag_m^-$$
.

Таблица 2.

Константы скорости автопроявления (k_A), накопления фотолитического серебра, определяемого методами ИВА (k_{ИВА}) и масс - спектрометрии (k_ф).участков.

I, 10 ¹⁵ ,	k _φ , c⁻¹	k _{ивА} , с⁻¹	k _A , c⁻¹
квант.см⁻².с⁻¹			
3.17	3.55·10 ⁻³	2.98·10 ⁻³	3.04·10 ⁻³
	±1.34·10 ⁻³	±1.72·10 ⁻³	±1.44·10 ⁻³
3.8	2.29·10 ⁻³	2.59·10 ⁻³	2.4·10 ⁻³
	±4.4·10 ⁻⁴	±5.9·10 ⁻⁴	±9.8·10 ⁻⁴

Подвижный ион серебра Ag^+ нейтрализует заряженный центр (Ag_m^-) или закрепляется на нейтральном центре Ag_m^{0} : Ag_m^- + $Ag^+ \rightarrow Ag_{m+1}^{0}$ (7), $Ag_m^{0} + Ag^+ \rightarrow Ag_{m+1}^{++}$ (8).

ФОТОСТИМУЛИРОВАННЫЕ ПРЕВРАЩЕНИЯ В АЗИДЕ СЕРЕБРА

Для определения лимитирующей стадии процесса роста частиц серебра оценили время, в течение которого подвижный ион Ag⁺ нейтрализует локализованный электрон (стадия 7) и диффундирует к нейтральному центру (стадия 8). Время релаксации по механизму дрейфа ионов Ag⁺ в кулоновском поле к локализованному электрону равно максвеловскому времени релаксации [16]: τ_i = ε/4πσ,

Таблица 1.

Изменение числа молей серебра в зависимости от интенсивности падающего света, времени облучения AgN₃ (A₁) светом λ =365 нм.

J.10 ¹⁵ .	τ. C	$V_{ABTORD} = V_{IABA} -$	v_{AG} 10 ⁻¹⁰	v_{Aq} 10 ⁻¹⁰	VAG. 10 ⁻¹⁰
квант·см ⁻² ·с ⁻¹	ι, σ	v_{Φ} , 10 ⁻¹⁰	[Φ]	[NBA]	[ЭФ]
3.17	10	0,02	0.8 ± 0.02	0.82 ± 0.05	
	30	10,1	2.4 ± 0.06	12.5 ± 0.04	
	180	11	19.8 ± 0.06	30,8 ± 0.23	
	1200	12	139.9 ± 0.72	151.1 ± 1.2	
3.8	10	2,13	2.05 ± 0.06	4.18 ± 0.01	
	30	14,49	12.21 ± 0.05	26.7 ± 0.3	
	40	20,78	16.72 ± 0.07	37.5 ± 0.2	
	60	239,8	25.74 ± 0.1	264.8 ± 0.9	
	180	300,8	72.22 ± 0.4	372.8 ± 1.2	
	360	794	166.3 ± 1.2	940.1 ± 2.3	
	900	3609	553.1 ± 3.4	4162.3 ± 5.4	2700 ± 11
	1200	5110	839.4 ± 8.9	5950.2 ± 10	4834 ± 14
	1800	7338	1494.9 ± 9.1	8832 ± 12	8123 ± 16
	2700	20444	3356.1 ±15	23700 ± 12	19760 ± 18

где: ϵ - диэлектрическая проницаемость AgN₃(A₁), 4 [17], σ - удельная проводимость AgN₃. При T=293 К σ =1·10⁻¹² ом⁻¹·см⁻¹ [18] и $\tau_i \approx 0.35 c (k_1 \approx 1/0.35 \approx 2.85 c^{-1}).$

Среднее время релаксации при диффузионном протекании процесса (стадия 8) может быть оценено [16]: $\tau_n = e^2/\sigma akT$,

где: е - заряд электрона, а - постоянная решетки AgN₃, 5.6×10^{-8} см, k - постоянная Больцмана, Т-температура, 293К. При T=293 $\tau_n \approx 1.14 \times 10^2 c \ (k_2 \approx 1/1.14 \cdot 10^2 \approx 8.8 \cdot 10^{-3} c^{-1}).$

Приведенные приближенные оценки, а также совпадение значений $k_{\phi}, k_{\text{ИВА}}, k_2$ дают основание предположить, что лимитирующей стадией процесса роста фотолитического серебра является диффузия ионов серебра к нейтральному центру Ад_m°. При условии, что концентрация центров роста (T_n⁺) и скорость роста частиц серебра постоянная, зависимость скорости реакции от времени экспонирования, согласно [19], описывается уравне- $\chi = 2\pi (M^2/d^2) W^3_{yA} N, M$ - молярная нием 1. где масса серебра, d - эффективная плотность серебра, W_{уд} - удельная скорость реакции, N количество частиц серебра, а - время, при котором скорость касания растущих ядер максимальна, о - рассеяние случайных величин вокруг ее математического ожидания.

Чем меньше σ, тем больше ядер касаются к моменту времени τ=а и тем более равномерно распределены они на поверхности. Первый член правой части уравнения (1) выражает скорость реакции при независимом росте ядер, а остальные – поправку, связанную с перекрыванием ядер. Параметр χ предварительно определяли из данных для начального участка кинетической кривой (рис.1, кривая 2) [19]:

$$n_{a} = \int_{0}^{a} w d\tau = \frac{1}{3} \chi a^{3}, \qquad (2)$$

где n_а - количество превращенного вещества. Численное значение $\chi = 0.1*10^{-11}$ моль*мин⁻³. Параметр а и о определяли сопоставляя кинетическую кривую V_ф (рис.1) с калибровочными кривыми, построенными при различных значениях а и σ по уравнению (1). Получили, что при χ = 0.1 10 11 моль*мин 3 а=6 мин и σ=20. Рассчитанная по формуле (1) кривая скорости образования частиц серебра представлена на рис.1. По тангенсу угла наклона зависимости InC_{Ag} = f(τ), где C_{Ag} - концентрация фотолитического серебра, оценили константу скорости роста частиц фотолитического серебра (k = $4.3 \cdot 10^{-3}$ c⁻¹). Рассчитанное значение k удовлетворительно согласуется с константой скорости диффузии междуузельного катиона серебра Ag⁺ к растущей частице

ПОЛЗУНОВСКИЙ ВЕСТНИК № 4-1 2011

серебра (k₂) и с константой скорости фотолиза, определенной из экспериментальных данных (таблица 2). Согласно [19], удельная скорость образования частиц серебра

где : S_{yg} - удельная поверхность азида серебра, $S_{yg}{=}6{\cdot}10^6~\text{см}^2{\cdot}\text{моль}^{-1}$ [20],

g - навеска исходного образца.

Поскольку коэффициент поглощения для азида серебра при λ =365 нм составляет 10⁵ [17], то процесс фотолиза протекает на глубине до 10⁻⁵ см, возможно вместо значения g, использовать g₁ = 4.1·10⁻⁷ моль, рассчитанное из кривой полного разложения азида серебра. При g₁ получили, что W_{уд}=8.7·10⁻¹¹ моль-с⁻ ¹.Зная W_{уд}, оценили размеры частиц фотолитического серебра [19]:

$$r = \frac{M}{d} W_{y\partial}(t-\tau) \quad (3).$$

Полученные данные удовлетворительно согласуются с результатами электронной микроскопии [21]. Из сопоставления результатов, представленных в таблице 1 следует что, количества серебра, определяемые методами ИВА, ЭФ и масс-спектрометрии значительно различаются. По нашему мнению, основной причиной наблюдаемых различий в количестве определяемого серебра являются химические реакции, протекающие при

$$w = \chi \tau^{2} - 2\chi \tau \begin{cases} \left(\frac{\sigma}{\sqrt{2\pi}}\right) \exp\left[-\frac{(\tau-a)^{2}}{2\sigma^{2}}\right] - \left(\frac{\sigma}{\sqrt{2\pi}}\right) \exp\left(-\frac{a^{2}}{2\sigma^{2}}\right) \\ + \left[\frac{(\tau-a)}{\sigma\sqrt{2\pi}}\right] \times \int_{0}^{\tau} \exp\left[-\frac{(\tau-a)^{2}}{2\sigma^{2}}\right] d\tau \end{cases}$$
, (1)

участии растворителя AgN₃(A₁) - раствора тиосульфата натрия, которые приводят к восстановлению (автопроявлению [22]) ионов серебра.Обнаруженная с помощью электронного микроскопа структура отложений серебра, образующихся при взаимодействии предварительно облученных образцов AgN₃(A₁) с раствором тиосульфата натрия, свидетельствует о том, что автопроявление локализовано на границе раздела микрогетеросистем «AgN₃(A₁)-Ag (продукт фотолиза)» [21]. Граница раздела микрогетерогенных систем, вероятно, является областью повышенной реакционной способности. Таким образом, чем больше площадь границы раздела «AgN₃(A₁)-Ag», тем больше и количество восстановленного серебра (табл. 1). В присутствии растворителя электрон от азид аниона N₃⁻ переходит к растущей частице серебра, имеющей заряд + или 0 (Ag_m⁺ и Ag_m⁰) (реакции 5,6), подвижный ион серебра Ag⁺ нейтрализует заряженный центр (Agm) или закрепляется на нейтральном центре Agm (реакции 7,8).Чередование стадий (5,6) или (7,8) приводит к накоплению дополнительного (не фотолитического) серебра. Дырки взаимодействуют с образованием азота по реакциям (4).

По тангенсу угла наклона зависимости $\ln v_{Ag}$ от τ оценили значение константы скорости автопроявления (k_A). Оказалось, что k_A совпадает с константой k_{ϕ} (таблица 2). Этот факт, свидетельствует о том, что лимитирующей стадией процесса накопления фотолитического серебра и автопроявления является диффузия ионов серебра к нейтральному центру Agm^0 .

СПИСОК ЛИТЕРАТУРЫ

1. Боуден Ф., Иоффе А.Ф. Быстрые реакции в твердых веществах. - М.: Мир. 1969. – 247 с. 2. Verneker, V.R.P. // J. Phys. Chem. 1968. V. 72. №

5. P. 1733–1736.

3. Дубовицкий А.В., Дубовицкий А.В., Прохорин Е.В., Яковлев В.В., Манелис Г.Б. // Химия высоких энергий. 1976. Т.10. №1. С. 59-63.

4. Суровой Э.П., Сирик С.М., Бугерко Л.Н. // Химическая физика. 1999. Т.18. №2. С. 44-46.

5. Суровой Э.П., Захаров Ю.А., Бугерко Л.Н. // Неорганические материалы. 1996. Т. 32. № 2. С. 162– 164.

6. Брайнина Х.З. Инверсионная вольтамперометрия твердых фаз. – М.: Химия. 1972. – С. 44-47.

7. Пятнитский И.В., Сухан В.В. Аналитическая химия серебра. – М.: Наука. 1979. – 256 с.

8. Выдра Ф, Штулик К., Юлакова Э. Инверсионная вольтамперометрия. – М.: Мир. 1980. – 240 с.

9. Брайнина Х.З., Нейман Е.Я. Твердофазные реакции в аналитической химии – М.: Химия. 1982. – С. 224-228.

10. Иванчев Г. Дитизон и его применение. – М.: ИЛ. 1961. – 451 с.

11. Иванов Ю.И. // Патент 2054169 РФ, МПК⁶. G01 №27/48. Заявлено 11.08.92, опубликовано 10.02 96.

12. Янг Д. Кинетика разложения твердых веществ. – М.: Мир. 1969. – 263с.

13. Deb S.K. // Trans. Farad. Soc. 1969. V. 65. P. 3187–3194.

14. Колпаков О.Л. Кинетические особенности фото- и радиационных процессов в системах с ростом центров рекомбинации. Автореф. дисс ... канд. физ. - мат. наук. Кемерово: КемГУ, 1990. 22с.

15. Захаров Ю.А., Суровой Э.П. // Журн. науч. и прикл. фотогр. и кинематогр. 1981. Т.25. №1. С.24-29.

16. Мейкляр Г.В. Физические процессы при образовании скрытого фотографического изображения. - М.: Наука. 1972. - 399c.

17. Диамант Г.М. Неравновесная проводимость в процессе фотохимической реакции в азиде серебра. Автореф. дис... канд.физ-мат.наук.- Кемерово: КемГУ, 1986. 22с.

18. Захаров Ю.А., Гасьмаев Л.В., Колесников В.К. // Журнал физической химии. 1976. Т.50. №.7. С. 1669-1673.

19. Розовский А.Я. Гетерогенные химические реакции. Кинетика и механизм. - М.: Наука. 1980. -264c

20. Савельев Г.Г., Захаров Ю.А., Гаврищенко Ю.В. // Журн. науч. и прикл. фотогр. и кинематогр. 1969. T.14. №6. C. 466-468.

21. Сирик С.М. Фотолиз азида серебра и гетеросистем «азид серебра – металл», «азид серебра – полупроводник». Автореф. дисс... канд. хим. наук. Кемерово: КемГУ, 1999. 20 с.

22. Рябых, С.М. // Журн. науч. и прикл. фотогр. и кинематогр. 1983. Т.28. №1. С. 42-46.

ФОРМИРОВАНИЕ ПРОДУКТОВ ФОТОЛИЗА АЗИДА СВИНЦА

Л.Н. Бугерко, Г.О. Еремеева, А.И. Мохов

Установлено, что предварительное облучение азида свинца светом (λ =365 нм, I=2·10¹⁵ квант см⁻² с⁻¹) в вакууме (1.10⁻⁵ Па) наряду с увеличением скорости фотолиза и фототока приводит к появлению новой длинноволновой (до λ =600нм) области спектральной чувствительности. Определены константы скорости фотолиза азида свиниа. В результате измерений контактной разности потенциалов, вольт-амперных характеристик, фото-ЭДС, фототока установлено, что при фотолизе азида свинца формируются микрогетерогенные системы PbN₆(Ам) – Pb (продукт фотолиза). Показано, что лимитирующей стадией образования фотолитического свинца является диффузия анионных вакансий к нейтральному иентру Pb_n^0 .

Ключевые слова: азид свинца, фотолиз, микрогетерогенные системы.

Было установлено [1-17], что выделяющиеся при разложении твердофазные продукты оказывают существенное влияние на фотохимические и фотоэлектрические свойства азидов тяжелых металлов. В настоящем сообщении представлены результаты исследований кинетических и спектральных закономерностей образования продуктов в процессе фотолиза азида свинца.

ОБЪЕКТЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Азид свинца марки Ам (PbN₆(Aм)) синтезировали методом двухструйной кристаллизации, медленным (в течение 60 минут) сливанием «струя в струю» водных 0,2 н растворов дважды перекристаллизованного технического азида натрия и нитрата свинца (квалификации х.ч.) при pH 3 и T = 293К [18]. Образцы для исследований готовили прессованием таблеток PbN₆(Ам) массой 150 мг при давлении 1·10⁻³ кг·см⁻², либо путем нанесения 150 мг навесок PbN₆(Ам) на кварцевую пластинку в виде спиртовой суспензии, с последующей отгонкой спирта в вакууме. Измерения скорости фотолиза (V_Ф), фототока (i_Ф) и фото-ЭДС (U_Ф) образцов проводили в вакуу-

ртутная (ДРТ-250) и ксеноновая (ДКсШ-1000) лампы. Для выделения требуемого участка спектра применяли монохроматор МСД-1 и набор светофильтров. Актинометрию источников света проводили с помощью радиационного термоэлемента РТ-0589. В качестве датчика при измерении V_Ф использовали лампу РМО - 4С омегатронного масс - спектрометра ИПДО – 1, настроенного на частоту регистрации азота. Измерения і_ф и U_ф проводили на установке, включающей электрометрический вольтметр В7-30, либо электрометр TR – 1501 [15]. Спектры диффузного отражения (ДО) измеряли при давлении 101,3 кПа на спектрофотометре SPECORD - М40 с приставкой на отражение 8°d и в вакууме (1.10-4 Па) [16]. Контактную разность потенциалов (КРП) между азидом свинца, свинцом и электродом сравнения из платины измеряли, используя модифицированный метод Кельвина [19]. Топографию твердофазных продуктов фотолиза азида свинца изучали методом угольных реплик на электронном микроскопе УЭМВ - 1000.

ме (1×10⁻⁵ Па). Источниками света служили

ПОЛЗУНОВСКИЙ ВЕСТНИК № 4-1 2011