УДК 620.179.14

ВИХРЕТОКОВАЯ ДЕФЕКТОСКОПИЯ ПРУТКОВ И ТРУБ С ВОЗБУЖДЕНИЕМ РАЗНОЧАСТОТНЫХ ВИХРЕВЫХ ТОКОВ ЦИРКУЛЯРНОГО И ПРОДОЛЬНОГО НАПРАВЛЕНИЙ

А.Е. Гольдштейн, В.Ф. Булгаков, Х.-М.В.А. Крёнинг

Рассматривается метод вихретоковой дефектоскопии с использованием комбинированного многосекторного преобразователя с разночастотным магнитным полем. Описана техническая реализация метода для дефектоскопии прутков и труб в условиях значительных поперечных смещений контролируемых изделий и неоднородности магнитных и электрических свойств материала.

Ключевые слова: вихретоковая дефектоскопия, комбинированный многосекторный преобразователь, разночастотное магнитное поле

Состояние проблемы

Вихретоковый метод контроля является одним из самых чувствительных и производительных, однако его использование для дефектоскопии протяженных ферромагнитных изделий в автоматическом режиме сопряжено с определенными проблемами. В частности, сложность дефектоскопии необработанных ферромагнитных прутков и труб связана с разнообразием встречающихся дефектов (непровары шва, неметаллические включения, закаты, трещины, волосовины, поры и т.п.), а также с наличием мешающих факторов - неоднородности магнитных и электрических свойств материала, большими поперечными смещениями контролируемых изделий в зоне контроля вихретокового преобразователя.

Предлагаемое решение

Для обеспечения высокой достоверности контроля в условиях действия мешающих факторов предлагается метод вихретоковой дефектоскопии прутков и труб на основе использования комбинированного многосекторного вихретокового преобразователя (ВТП) с возбуждением разночастотных вихревых токов циркулярного и продольного направлений и разделения близких по частоте составляющих сигналов ВТП импульсными фильтрами нижних частот с конечными импульсными характеристиками [1]. Использование для возбуждения вихревых токов в контролируемом изделии магнитного поля с разночастотными пространственными компонентами позволяет в одном ВТП объединить проходной многосекторный ВТП [2] и накладной многосекторный ВТП с возбуждением разночастотных вихревых токов продольного направления [3]. Достоинствами такого комбинированного ВТП являются высокая чувствительность, как к локальным дефектам, так и протяженным

дефектам с малым градиентом свойств в продольном направлении, возможность обеспечить высокую достоверность обнаружения различных по физической природе и геометрическим параметрам дефектов даже при наличии значительных поперечных смещений контролируемых изделий и неоднородности электромагнитных свойств материала.

Для исследования предложенного метода вихретоковой дефектоскопии разработана система вихретокового контроля (СВТК), пригодная для проведения автоматического контроля ферромагнитных прутков и труб в лабораторных условиях.

Система вихретокового контроля

На рисунке 1а приведена структурная схема СВТК, а на рис. 16 – конструкция ВТП. Для наглядности обмотки ВТП условно разнесены вдоль продольной оси Z, реально же все обмотки в продольном направлении совмещены.

Принцип работы системы контроля заключается в следующем. Генераторами 1, 2 и 3 вырабатываются гармонические напряжения с частотами ω_1 , ω_2 и ω_3 . Все генераторы синхронизируются схемой синхронизации 4, благодаря чему поддерживаются стабильны- $\omega_2 - \omega_1 = \Delta \omega$ разности частот ми и $\omega_3 - \omega_1 = k \cdot \Delta \omega$. Здесь *k* – целое число. Частоты ω_1 , ω_2 и ω_3 отличаются от $\Delta \omega$ в целое число раз. В СВТК использован вариант синхронизации частот генераторов, основанный на делении опорной частоты ω_0 в m(n-1), $m \cdot n$ и n(n-1) раз. Здесь m и n – целые числа. Частоты выходных напряжений генераторов при этом равны соответственно $\omega_1 = \omega_0 / m \cdot n$; $\omega_2 = \omega_0 / m (n-1)$; $\omega_3 = \omega_0 / n (n-1)$? $\Delta \omega = \omega_0 / m n (n-1) \mu$ разность частот а

ПОЛЗУНОВСКИЙ ВЕСТНИК № 2/1, 2012

k = m - n + 1. Сигнал разностной частоты $\Delta \omega$ может быть получен последовательным делением частоты ω_0 на *m*, *n* и (*n* – 1).

Выходные сигналы генераторов 1, 2 и 3 подаются на обмотки возбуждения ВТП 5, 6 и 7. Токи этих обмоток создают в зоне контроля ВТП магнитное поле с тремя гармоническими ортогональными пространственными составляющими частот ω 1, ω 2 и ω 3. Трехчастотное магнитное поле возбуждения наводит в контролируемом изделии вихревые токи трех частот. Двухсекционные обмотки накладного

типа 5 и 6 используются для возбуждения в поверхностном слое контролируемого изделия вихревых токов продольного направления близких частот ω_1 и ω_2 , а обмотка проходного типа 7 – для возбуждения вихревых токов циркулярного направления частоты ω_3 .

Следует отметить, что разность частот $\Delta \omega$ в данном случае, в отличие от использования классических многочастотных ВТП, пренебрежимо мала с точки зрения результатов электродинамического взаимодействия магнитного поля и объекта контроля.

А.Е. ГОЛЬДШТЕЙН, В.Ф. БУЛГАКОВ, Х.-М.В.А. КРЁНИНГ

РАЗДЕЛ V. ИЗМЕРЕНИЕ, КОНТРОЛЬ, АВТОМАТИЗАЦИЯ ПРОИЗВОДСТВЕННЫХ ПРОЦЕССОВ

Для уменьшения сигналов от структурных неоднородностей, как правило, коррелированных с локальными изменениями магнитных свойств осуществляется подмагничивание контролируемого изделия магнитным полем постоянного тока обмотки намагничивания 17, подключенной к стабилизированному источнику намагничивающего тока 16.

Для измерения составляющих поля вихревых токов частоты ω_1 используются четырехсекционная и двухсекционная измерительные обмотки 8 и 9, для измерения вихревых токов частоты ω_2 – четырехсекционная и двухсекционная измерительные обмотки 10 и 11, а для измерения составляющих поля вихревых токов частоты ω_3 – односекционные измерительные обмотки 12÷15.

Благодаря соответствующим направлениям намотки секций возбуждающих и измерительных обмоток и их взаиморасположению (рисунок 1б) при отсутствии изделия в зоне контроля ВТП и при совпадении оси помещенного в зону контроля изделия с продольной осью ВТП, начальные и вносимые эдс измерительных обмоток частоты измеряемого магнитного поля отсутствуют. Эдс частоты измеряемого магнитного поля в измерительных обмотках появляются при нарушении симметрии наводимых в изделии вихревых токов в случае наличия дефекта, радиального смещения (для обмоток 8÷11) либо перекоса (для обмоток 8÷15) контролируемого изделия относительно продольной оси ВТП. Для разделения этих воздействий используется амплитудно-фазовая обработка сигналов. Для этого в системе контроля имеются десять одинаковых измерительных каналов 18÷25, состоящих каждый из последовательно соединенных амплитудно-фазового детектора и интегрирующего дискретизатора. Каналы 18÷21 предназначены для выделения сигналов от протяженных дефектов, каналы 18 и 20 предназначены, кроме того, для выделения сигналов от поперечных смещений контролируемого изделия соответственно по осям Y и X, каналы 22÷25 предназначены для выделения сигналов от коротких дефектов.

Амплитудно-фазовый детектор осуществляет синхронное с соответствующей частотой управления ω_i детектирование напряжения измерительной обмотки ВТП, а интегрирующий дискретизатор выполняет усреднение выходного сигнала амплитудно-фазового детектора за время $T = 2\pi / \Delta \omega$, задаваемое выходным сигналом схемы синхронизации 4. Схемотехнически интегрирующий дискретизатор состоит из последовательно соединенных схем аналогового интегратора и запоминаюшего устройства. охваченных обшей отрицательной обратной связью, и представляет собой импульсный фильтр нижних частот с конечной импульсной характеристикой [3]. Коэффициент передачи такого измерительного канала имеет зависимость от частоты о входного сигнала вида:

$$K(\omega) = \frac{2}{\pi} \cdot \frac{\omega_i \cdot \Delta \omega}{\omega^2 - \omega_i^2} \cdot \sin \pi \frac{\omega}{\Delta \omega}$$
(1)

Анализ приведенной на рисунке 2 амплитудно-частотной характеристики измерительного канала с опорной частотой ω_i (кривая 1) показывает, что зависимость $K(\omega)$ имеет нули на частотах, отличающихся от ω^i на значения, кратные $\Delta \omega$. Модулированный сигнал от дефекта частоты ω_i , спектр которого показан кривой 2, пропускается измерительным каналом практически без искажения, а модулированный сигнал близкой частоты $\omega_i + \Delta \omega$, спектр которого показан кривой 3, ослабляется более чем на порядок.

В результате такой обработки сигналов на выходах измерительных каналов 18 и 19 выделяются сигналы U₁₁, U₁₂, пропорциональные амплитудам комплексных составляющих вносимых напряжений соответственно четырехсехсекционной и двухсекционной

ПОЛЗУНОВСКИЙ ВЕСТНИК № 2/1, 2012

ВИХРЕТОКОВАЯ ДЕФЕКТОСКОПИЯ ПРУТКОВ И ТРУБ С ВОЗБУЖДЕНИЕМ РАЗНОЧАСТОТНЫХ ВИХРЕВЫХ ТОКОВ ЦИРКУЛЯРНОГО И ПРОДОЛЬНОГО НАПРАВЛЕНИЙ

измерительных обмоток 8 и 9 частоты ω_1 , на выходах измерительных каналов 20 и 21 выделяются сигналы U₂₁, U₂₂, пропорциональные амплитудам комплексных составляющих вносимых напряжений соответственно четырехсехсекционной и двухсекционной измерительных обмоток 10 и 11 частоты ω_2 , а на выходах измерительных каналов 22÷25 – сигналы U₃₁, U₃₂, U₃₃, U₃₄, пропорциональные амплитудам комплексных составляющих вносимых напряжений соответственно односекционных измерительных обмоток 12÷15 частоты ω_3 .

Качественное разделение сигналов, обусловленных каждой в отдельности составляющей магнитного поля, позволяет эффективно применить амплитудно-фазовую отстройку от влияния радиальных смещений и перекосов. Отстройка от влияния смещений и перекосов в каждом канале осуществляется регулировкой фазовых сдвигов опорных напряжений амплитудно-фазовых детекторов.

В результате амплитудно-фазовой отстройки мнимые составляющие выходных напряжений измерительных каналов дефектоскопа определяются главным образом наличием или отсутствием в контролируемой зоне дефектного участка изделия, а действительные составляющие – величиной поперечного смещения изделия относительно продольной оси ВТП.

Вычислительным блоком 26 осуществляется определение результирующих напряжений U_1 каналов измерения продольных составляющих вихревых токов частот ω_1 и ω_2 и U_2 каналов измерения циркулярных составляющих вихревых токов частоты ω_3 , а также сравнение этих напряжений с установленными пороговыми значениями.

Амплитуды сигналов от дефекта в каждом измерительном канале зависят не только от геометрии дефекта (глубины, раскрытия, ориентации), но и от азимута местоположения на поверхности изделия – угла θ (рисунок 1б). Для независимости амплитуды суммарного сигнала от азимута протяженного дефекта в вычислительном блоке 26 производится попарное алгебраическое суммирование, а затем векторное суммирование сигналов от дефектов измерительных каналов 18÷21:

$$U_1 = \sqrt{(\mathrm{Im}\dot{U}_{11} + \mathrm{Im}\dot{U}_{22})^2 + (\mathrm{Im}\dot{U}_{12} + \mathrm{Im}\dot{U}_{21})^2} \ . \ (2)$$

Результирующий сигнал U1 практически не зависит от азимута дефекта. Другой положительной особенностью такого алгоритма обработки сигналов ВТП является то, что в этом случае значительно ослабляется сигнал помехи, обусловленный возможным нарушением оптимального условия отстройки от смещения ввиду изменения электрофизических свойств контролируемого изделия и нарушения перпендикулярности направления отстройки и линии смещения. Физически такое ослабление влияния смещения объясняется тем, что при смещении изделия по оси ОУ сигнал возникает в измерительных обмотках 8 и 11, а при смещении по оси ОХ – в измерительных обмотках 9 и 10, причем в обоих случаях в противофазе.

Для независимости амплитуды суммарного сигнала U2 от азимута короткого дефекта, а также ослабления его зависимости от поперечных смещений контролируемого изделия в вычислительном блоке 26 производится алгебраическое суммирование выходных сигналов от дефектов измерительных каналов 22÷25 с коэффициентами соответственно S₁, S₂, S₃, S₄, рассчитываемыми в зависимости от значений поперечных смещений изделия. Для определения значений поперечных смещений по осям ОХ и ОУ используется функциональная связь с этими величинами действительных составляющих сигналов $\operatorname{Re}U_{11}$ и $\operatorname{Re}U_{21}$, пропорциональных действительным составляющим сигналов четырехсекционных измерительных обмоток 8 и 10.

Необходимость использования при суммировании сигналов от коротких дефектов корректирующих коэффициентов обусловлена существенно большей, чем в случае сигналов от протяженных дефектов зависимостью от поперечных смещений контролируемого изделия. Результаты моделирования показывают, что без внесения коррекции на величину смещения степень неоднородности чувствительности к короткому дефекту при поперечных смещениях до 2мм достигает 180%.

Результирующий сигнал U2 каналов измерения циркулярных составляющих вихревых токов частоты ω3, равный

 $U_2 = s_1 \operatorname{Im} U_{31} + s_2 \operatorname{Im} U_{32} + s_3 \operatorname{Im} U_{33} + s_4 \operatorname{Im} U_{34}, \quad (3)$

практически не зависит от азимута дефекта и мало зависит от поперечного смещения контролируемого изделия. Степень неоднородности чувствительности к дефекту, обусловленная поперечными смещениями, уменьшается благодаря описанному выше преобразованию до приемлемого значения порядка 20%.

РАЗДЕЛ V. ИЗМЕРЕНИЕ, КОНТРОЛЬ, АВТОМАТИЗАЦИЯ ПРОИЗВОДСТВЕННЫХ ПРОЦЕССОВ

Рисунок 3 – Временные диаграммы сигналов U₁ (а) и U₂ (б) при контроле трубы с дефектами в виде сквозного сверления и продольной прорези.

При превышении напряжениями U1 и U2 пороговых значений вычислительным блоком формируется сигнал управления исполнительными устройствами.

Результаты контроля отображаются на мониторе 27. На рисунке 3 показаны временные диаграммы результирующих сигналов U1 и U2 каналов измерения циркулярных и продольных составляющих вихревых токов, отображаемые в окне программы вычислительного преобразования системы контроля. В качестве объекта контроля использовался образец трубы с дефектами в виде продольной прорези и сквозного отверстия. Как видно на приведенном рисунке, сквозное отверстие надежно выявляется измерительными каналами первого типа, а продольный дефект – каналами второго типа.

Заключение

Лабораторные испытания разработанной системы вихретокового контроля показали, что при проведении контроля необработанных ферромагнитных труб предложенным методом могут быть достигнуты следующие технические характеристики:

диаметр контролируемых труб от 10 до 50 мм;

минимальные обнаруживаемые протяженные дефекты в виде продольной прорези длиной 40 мм, шириной 0,1 мм и глубиной 2,5 % от внешнего диаметра трубы; чувствительность к коротким дефектам соответствует стандарту DIN (Германия);

максимальное поперечное смещение трубы ± 2 мм;

скорость контроля до 4 м /сек.

СПИСОК ЛИТЕРАТУРЫ

- Гольдштейн, А. Метод вихретоковой дефектоскопии прутков и труб на основе использования комбинированного преобразователя с возбуждением разночастотных пространственных компонент магнитного поля / А.Е. Гольдштейн, В.Ф. Булгаков, Х.-М. Кренинг // Дефектоскопия. – 2011. № 11. – С. 39–47.
- Булгаков, В. Уменьшение неравномерности чувствительности вихретоковых преобразователей при радиальных смещениях контролируемых изделий / В.Ф. Булгаков // Дефектоскопия. – 1999. № 9. – С. 3–8.
- Гольдштейн, А. Вихретоковая дефектоскопия протяженных цилиндрических изделий с использованием возбуждения разночастотных пространственных компонент магнитного поля / А.Е. Гольдштейн, С.А. Калганов // Дефектоскопия. – 2000. № 5. – С. 65–71.

Д.т.н., заведующий кафедрой **А.Е. Гольдитейн**, algol@tpu.ru; к.т.н., доцент **В.Ф. Булгаков**, bvf49@sibmail.com, Национальный исследовательский Томский политехнический университет, кафедра информационно-измерительной техники, тел. (3822) 418911; профессор **Х.-М.В.А. Крёнинг**, michael@kroening.com, университет Саарланда (г. Саарбрюккен, Германия).

ПОЛЗУНОВСКИЙ ВЕСТНИК № 2/1, 2012