ным взаимодействием, в том числе и полярпоправок, в свою очередь, также сложна. Для упрощения рассмотрим лишь три составляющих выражения (1). Из него находим

$$\frac{\partial \mu}{\partial q} = \frac{\partial \mu_0}{\partial q} + \frac{\partial \mu^{(I)}}{\partial q} + \frac{\partial \mu^{(II)}}{\partial q} \,. \tag{2}$$

Нетрудно видеть, что $\frac{\partial \mu^{(I)}}{\partial q}$ и $\frac{\partial \mu^{(II)}}{\partial q}$

взаимозависимы. Обе поправки обусловлены тем, что участие полярных групп С=О в межмолекулярном взаимодействии приведет к изменению соответствующего вектора поляризации, который опосредованно, через внутримолекулярное взаимодействие окажет влияние на гидроксильные связи этой же молекулы кроконовой кислоты. Такое влияние будет передаваться по всей цепи молекул связанных в кристалле межмолекулярными H-связями. Из изложенного следует, что поскольку величина $\frac{\partial \mu}{\partial q}$ есть сумма нескольких

составляющих, которые могут иметь различные знаки, то для определения тенденции изменения ИК полос в каждом конкретном случае следует определить, какой из членов (1) является доминирующим.

Так как взаимное влияние векторов по-

ляризации $\left(\frac{\partial \vec{\mu}}{\partial q}\right)^A$ и $\left(\frac{\partial \vec{\mu}}{\partial q}\right)^B$ при симметричных и антисимметричных колебаниях карбониль-

ных связей не адекватно, вклад $\frac{\partial \mu^{(l)}}{\partial q}$ при

данных колебаниях различен по величине. Таким образом, выражение для отношения интенсивностей соответствующих колебательных полос будет задаваться выражением [6]

$$\frac{A_{as}}{A_s} = b^2 t g^2 \frac{\alpha}{2}$$

УДК 547(045)

ными эффектами. Строго говоря, каждая из ЗАКЛЮЧЕНИЕ

Полученные данные показали, что происходит изменение спектра внутримолекулярных колебаний, в частности наблюдается перераспределение интенсивностей полос молекулярных фрагментов, участвующих в водородных связей. Наблюдаемые изменения в спектре объясняются перераспределением электронной плотности в молекулах кроконовой кислоты.

Для описания наблюдаемых изменений спектров возможно использование модели парциальных осцилляторов.

ЛИТЕРАТУРА

- Horiuchi S., Kumai R., Tokura Y. Hydrogen-Bonding Molecular Chains for High-Temperature Ferroelectricity // Adv. Mater. 2011. Vol. 23. P 2098–2103.
- Polar distortions in hydrogen bonded organic ferroelectrics / Stroppa A., Sante D., Horiuchi S. et al. // Physical Review B 2011. Vol. 84. P. 014101(1) - 014101(5).
- Defining the hydrogen bond: An account (IUPAC Technical Report) / E. Arunan, G. R. Desiraju, R. A. Klein et al. // Pure Appl. Chem. 2011. Vol. 83. № 8. P. 1619-1636.
- Above-room-temperature ferroelectricity in a single-component molecular crystal / Horiuchi S., Tokunaga Y., Giovannetti G. et al. // Nature 2010. Vol. 463. P. 789-792.
- Braga D., Maini L., Grepioni F. Crystallization from hydrochloric acid affords the solid-state structure of croconic acid (175 years after its discovery) and a novel hydrogen-bonded network // Cryst. Eng. Comm. 2001. №6. Р. 1–3.
- Фадеев Ю.А. Спектроскопическое изучение взаимодействия парциальных осцилляторов на примере идентичных полярных связей в симметричных молекулах. // Спектрохимия внутри- и межмолекулярных взаимодействий. 1995. Вып. 6. С.190-208.

АНАЛИЗ ПОТОКОВЫХ ГРАФОВ СИСТЕМЫ ВОДА - H-БУТИЛОВЫЙ СПИРТ - УКСУСНАЯ КИСЛОТА - H-БУТИЛАЦЕТАТ

И.В. Сеселкин

В работе выполнен термодинамико-топологический анализ фазовой диаграммы сложной четырёхкомпонентной системы вода - н-бутиловый спирт — уксусная кислота — нбутилацетат. Исследованы типы особых точек диаграммы. Разработаны и проанализированы графы последовательности выделения фракций и потоковые графы. Предложены принципиальные технологические схемы разделения смеси.

Ключевые слова: термодинамико-топологический анализ, концентрационный симплекс, азеотропия, расслаивание, сепаратор, ректификационная колонна.

Один из способов получения витамина В₂ – конденсация пиримидинового компонента с вторичными ортоаминоазосоединениями ароматического ряда, содержащими два атома азота в орто-положении, необходимых для построения срощенного пиримидинового цикла [1].

В качестве среды для проведения конденсации используют различные органические растворители (этиловый спирт, диоксан, этиленгликоль, н-бутиловый спирт, нбутилацетат и др.).

Реакция конденсации катализируется слабыми органическими кислотами, имеющими константу диссоциации от 1,2 ·10⁻³ до 6,8·10⁻⁵, такими как уксусная, бензойная, янтарная, никотиновая и др.; при отсутствии катализатора выход рибофлавина снижается до 20 % [2].

В качестве рабочей смеси процесса конденсации используют бутанолбутилацетатную смесь с добавлением катализатора – уксусной кислоты. При проведении процесса конденсации в жидкой фазе протекают обратимые реакции этерификации уксусной кислоты и гидролиза бутилацетата.

Для регенерации растворителей, как правило, используют специальные методы разделения, такие как экстрактивная и гетероазеотропная ректификация, значительно реже – экстракция, первапорация, адсорбция и др. [3].

В работе применялся термодинамикотопологический анализ [4] диаграмм фазового равновесия системы вода (1) - н-бутиловый спирт (2) - уксусная кислота (3) - нбутилацетат (4), который позволяет выявить типы особых точек системы, определить термодинамические ограничения и выбрать возможные методы разделения сложных органических смесей.

Трёхмерный концентрационный симплекс (тетраэдр), соответствующий рассматриваемой смеси и развёртка его на поверхность представлены на рисунке 1а, б. Согласно литературным и экспериментальным данным [5,6], две тройные составляющие азеотропны, две остальные – зеотропны. В тетраэдре имеется десять особых точек: два тройных азеотропа (Az₁₂₄, Az₂₃₄), четыре бинарных (Az₁₂, Az₁₄, Az₂₃, Az₂₄) и четыре вершины, соответствующие чистым компонентам.

Из анализа типов особых точек [4] следует, что в рассматриваемой системе имеется один неустойчивый узел N_2^- (азеотроп Az₁₂₄) и два устойчивых узла N_0^+ и N_1^+ , отве-

ПОЛЗУНОВСКИЙ ВЕСТНИК № 1 2013

чающие н-бутилацетату и максимальному азеотропу Az_{23} . Остальные особые точки являются сёдлами относительно объёма тетраэдра: Az_{234} – отрицательное седло типа C_2 ; Az_{12} , Az_{14} , Az_{24} – положительные бинарные сёдла C_1^+ ; 1, 2 – отрицательные сёдла C_0^- ; 3 – положительное седло C_0^+ (рисунок 2а). Точки 1, 2, 3, Az_{12} , Az_{14} , Az_{24} относительно границы тетраэдра являются сложными типа «седлоузел».

При наличии такого набора особых точек внутреннее пространство тетраэдра покрывается двумя трёхмерными пучками (выходящими из точки Az₁₂₄) дистилляционных линий, для которых точки 4 и Az₂₃ являются конечными. Разделяющее многообразие второго порядка проходит через точки Az₁₂₄ – 1 – 3 – Az₂₃₄ – Az₂₄ деля объём тетраэдра на два объёма дистилляции. Один трёхмерный пучок дистилляционных линий располагается в пространстве, ограниченном следующими особыми точками: Az₁₂₄, Az₂₄, Az₂₃₄, Az₁₄, 1, 3, 4. Второй трёхмерный пучок дистилляционных линий ограничен следующими особыми точками тетраэдра: Az₁₂₄, Az₂₄, 2, Az₁₂, 1, 3, Az₂₃₄, Az₂₃. Объём тетраэдра распадается на восемь областей непрерывной ректификации, три из которых расположены в дистилляционной области, устойчивым узлом которой является н-бутилацетат.

Рисунок 2 - Типы особых точек (а) и балансовый симплекс (б) системы вода (1)- нбутиловый спирт (2) – уксусная кислота (3) – н-бутилацетат (4)

Основываясь на предельно возможных разделениях, обусловленных структурой диаграммы жидкость-пар, с учётом заданных составов исходных смесей, расположенных в областях непрерывной ректификации $Az_{124} - 1 - 3 - 4$ (F_1) и $Az_{124} - Az_{12} - 1 - 3 - Az_{23}$ (F_2), рассмотрим принципиально возможные пути их разделения с помощью балансового концентрационного симплекса (рисунок 2б).

Из смеси, характеризующейся точкой состава F₁ по первому заданному разделению можно выделить, согласно линии материального баланса Az₁₂₄ – F₁ – W₁ (рисунок 3), азеотроп состава Az₁₂₄ и тройную смесь состава W₁. Графы последовательности выделения фракций, потоковые графы и принципиальная технологическая схема разделения (ПТСР) первого заданного разделения смеси F₁ изображены на рисунке За, б, г.

Точка состава W_1 расположена на грани 1 - 3 - 4 и при ректификации по первому заданному разделению в дистиллят выделяется азеотроп Az₁₄, который затем смешивается с Az₁₂₄ (полученным на первой колонне). Образовавшийся состав расположен на разделяющей Az₁₂₄ – Az₁₄ (точка K₁), при его расслоении из водного слоя S₁ выделяется вода, а из органического S₂' - н-бутилацетат. Разделение дистиллята состава P₁ предусмотрено с помощью азеотропной ректификации.

Недостатком этого варианта ПТСР является то, что уксусная кислота, наиболее реакционноспособный и коррозионно-агрессивный компонент, выводится лишь на третьей ректификационной колонне. Схема содержит шесть колон и один сепаратор. Число колонн можно сократить, если использовать азеотропную ректификацию, применяя в качестве разделяющего агента н-бутилацетат; при этом в кубе колонны II можно получить уксусную кислоту (фрагмент схемы представлен на рисунке Зв).

ОБЩАЯ И ТЕОРЕТИЧЕСКАЯ ХИМИЯ

Рисунок 3 - Вариант I ПТСР смеси вода – нбутиловый спирт – уксусная кислота – нбутилацетат а, б – граф последовательности выделения фракций т потоковый граф; в –вариант выделения уксусной кислоты; г- ПТСР

Осуществление второго заданного разделения смеси F_1 по балансовой линии $Д_1 - F_1$ – 4 позволяет выделить в кубе колонны уксусную кислоту, а в дистилляте смесь K_2 , состав которой расположен на разделяющей $Az_{124} - 1$ (рисунок 4а, б, в). Этот вариант схемы разделения предусматривает использование пяти колонн и одного сепаратора. К недостаткам следует отнести выделение нбутилацетата на двух колоннах. Однако этот вариант по сравнению с предыдущим имеет ряд преимуществ: меньшее число рециклов, более простая обвязка колонн.

Рисунок 4 - Вариант II ПТСР смеси вода (1) – н-бутиловый спирт (2) – уксусная кислота (3)– н-бутилацетат (4) а, б – графы; в - ПТСР

Используя первое заданное разделение исходной смеси состава F_2 , расположенной в области непрерывной ректификации $Az_{124} - Az_{12} - 1 - 3 - Az_{23}$, в кубовом продукте получается тройная смесь состава W_2 . Последующее разделение кубового продукта приводит к выделению в кубе колонны II – уксусной кислоты, а в дистилляте азеотропа Az_{124} . Такое разделение возможно осуществить, используя азеотропную ректификацию со сложным разделяющим агентом – водным слоем сепаратора S. Графы последовательности выделения фракций, потоковые графы и ПТСР исходной смеси состава F_2 изображены на рисунке 5а, б, в.

Az124

Ø)

a)

ОБЩАЯ И ТЕОРЕТИЧЕСКАЯ ХИМИЯ

Рисунок 5 - Вариант III ПТСР смеси вода (1) – н-бутиловый спирт (2) – уксусная кислота (3) – н-бутилацетат (4) а, б – граф последовательности выделения фракций и потоковый граф; в – ПТСР

При использовании второго варианта разделения смеси состава F2 (рисунок 6а, б, в) необходима схема, состоящая из четырёх колонн и двух сепараторов. Выделение уксусной кислоты, как коррозионно-опасного компонента, осуществляется на I колонне, что позволяет для изготовления последующих колонн использовать обычные для этих целей марки стали. Схемой предусмотрено применение двух сепараторов, так как первый из них работает в области составов 2 - Fz₁₂₄ -Az₂₄, а второй в области Az₁₂₄ – Az₂₄ – 4, т.е. конечными продуктами в каждой области будут соответственно н-бутиловый спирт и нбутилацетат. ПТСР этого варианта имеет очевидные преимущества по сравнению с вариантами первого заданного разделения.

a)

Q)

Рисунок 6 - Вариант IV ПТСР смеси вода (1) – н-бутиловый спирт (2) – уксусная кислота (3) – н-бутилацетат (4) а, б – граф последовательности выделения фракций и потоковый граф в - ПТСР

Окончательный выбор принципиальной технологической схемы разделения смеси может быть выполнен после проведения натурного и машинного экспериментов.

ЛИТЕРАТУРА

1. Шнайдман Л.О. Производство витаминов. М.: Пищевая промышленность, 1973. – 439 с.

2. Березовский В.М. Химия витаминов. М.: Пищевая промышленность, 1973. - 632 с.

3. Жаров В.Т. Серафимов Л.А. Физикохимические основы дистилляции и ректификации. – Л.: Химия, 1975. – 240 с.

4. Серафимов Л.А. Термодинамикотопологический анализ и проблемы разделения многокомпонентных смесей. Теор. основы хим. технологии. – 1987. – Т. 21, № 1, - с.74 – 85.

5. Огородников С.К., Лестева Т.М., Коган В.Б. Азеотропные смеси. Справочник. – Л.: Химия, 1971. – 848 с.