ОБЩАЯ И ТЕОРЕТИЧЕСКАЯ ХИМИЯ

2.Гошу Й.В., Царев Ю.В., Костров В.В. Изучение процесса адсорбции хрома(VI) на оксиде железа(III)// сб. статей 4-ой Международной конференции «Сотрудничество для решения проблемы отходов» – Харьков:—2007. – С. 265-268.

3.Халипова O.C., Кузнецова С.А. Получение сорбентов на основе CeO_2 // Тезисы докладов XIV международной конференции «Наукоемкие химические технологии—2012». гос. ун-т тонких хим. технологий им. М.В. Ломоносова — М.: изд-во МИТХТ, 2012. — С. 369.

4.Козик В.В., Кузнецова С.А., Халипова О.С. Получение тонких пленок диоксида церия из растворов салицилата церия(III)// журнал Химическая технология. – 2010. – Т.11, вып. 4. – С. 203 – 208.

5.Халипова О.С., Кузнецова С.А., Козик В.В.

Влияние салициловой кислоты на процесс термолиза пленкообразующего раствора на основе нитрата церия(III)// журнал Ползуновский вестник. – 2011. – вып. 4 – 1. – С. 74 – 77.

6.Серебренников В.В. Курсы химии редкоземельных элементов (скандий, иттрий, лантаниды)/ В.В. Серебренников – Томск: Изд-во Томск. гос. унта, 1963. – 440 с.

7.Минакова Т.С. Адсорбционные процессы на поверхности твердых тел. – Томск.: изд-во Томск гос. ун-та, 2007. – 260 с.

8.American Society for Testing Materials Inorganic Plain Cards. Philadelfia, 1946 – 1969.

9. Фролов Ю.Г. Курс коллоидной химии. Поверхностные явления и дисперсные системы – М.: Химия, 1989.-464 с.

УДК 620.22:621:539.3

ВЛИЯНИЕ ОБЛУЧЕНИЯ НА ОПТИЧЕСКИЕ СВОЙСТВА МоО3

Л.Н. Бугерко, Н.В. Борисова, В.Э. Суровая*, Г.О. Еремеева

Степень превращения пленок MoO3 (d=8-130 нм) при увеличении времени облучения, а также при уменьшении толщины пленок в атмосферных условиях — возрастает. При облучении пленок MoO3 обнаружено уменьшение оптической плотности в диапазоне $\lambda=310$ - 435 нм и формирование максимума поглощения при $\lambda=870$ нм. Предложен механизм превращения пленок MoO3, включающий: формирование в процессе приготовления и термообработки пленок MoO3 центра [(Va)++ e], переход электрона из валентной зоны на уровень центра [(Va)++ e] с образованием центра ([(e (Va)++ e]).

Ключевые слова: оксид молибдена (VI), облучение, механизм.

ВВЕДЕНИЕ

Выяснение природы и закономерностей процессов, протекающих в наноразмерных слоях различных материалов под действием различных энергетических факторов, представляет значительный интерес как для физики и химии твердого состояния и общей теории гетерогенного катализа, так и в связи с необходимостью разработки реальных систем с управляемым уровнем чувствительности к различным внешним воздействиям.

Среди разнообразных неорганических материалов особое место занимает оксид молибдена (VI). Оксид молибдена (VI) и системы на его основе привлекают внимание исследователей различного профиля [1-18]. МоО₃ применяется для получения молибдена (его сплавов и соединений), как составная часть керамических глин, глазурей, эмалей, красителей. Его используют в качестве катализатора в органическом синтезе, при переработке нефти (крекинг, гидроочистка, риформинг), он добавляется в качестве присад-

ки к моторным маслам. Оксид молибдена (VI), нанесенный на различные носители (диоксид титана, кремнезем), вызывает фотостимулированную конверсию метана и метансодержащих газовых смесей (в различных газовых композициях) с достаточно высоким выходом метанола, формальдегида, CO, CO₂ [13-14].

Устройства на основе MoO₃ могут быть рекомендованы к использованию в качестве электрохромных и фотохромных дисплеев [5, 13, 17], электрохромных зеркал или светоперераспределяющих фильтров [4-6], сенсоров для контроля содержания газов в атмосфере [10-12].

В работе представлены результаты исследований направленные на выяснение природы и закономерностей процессов, протекающих в условиях атмосферы в наноразмерных слоях MoO_3 различной толщины при облучении их светом из области собственного поглощения MoO_3 в зависимости от времени облучения.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Образцы для исследований готовили методом термического испарения в вакууме $(2\cdot10^{-3}\ \Pi a)$ путем нанесения тонких $(8\cdot130\ hm)$ пленок MoO_3 на подложки из стекла, используя вакуумный универсальный пост «ВУП-5M» [19, 20, 22]. Подложками служили стекла от фотопластинок, которые подвергали предварительной обработке в концентрированной азотной кислоте, в растворе дихромата калия в концентрированной серной кислоте, в килящей мыльной воде, промывали в дистиллированной воде и сушили [19, 20, 22]. Обработанные подложки оптически прозрачны в диапазоне $300 - 1100\ hm$.

Толщину пленок МоО₃ определяли спектрофотометрическим (спектрофотометр «Shimadzu UV-1700»), микроскопическим (интерференционный микроскоп «МИИ-4»), эллипсометрическим (лазерный эллипсометр «ЛЭФ-3М») и гравиметрическим (кварцевый резонатор) методами [21, 22]. Источниками света служили ртутная (ДРТ-250) и ксеноновая (ДКсШ-1000) лампы. Для выделения требуемого участка спектра применяли монохроматор МСД-1 и набор светофильтров. Актинометрию источников света проводили с помощью радиационного термоэлемента PT-0589.

Регистрацию эффектов до и после облучения образцов осуществляли спектрофотометрическим методом.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В результате исследований оптических свойств наноразмерных пленок MoO_3 было установлено, что спектры поглощения и отражения образцов до термообработки существенно зависят от их толщины.

На рис. 1 в качестве примера приведены представительные спектры поглощения пленок МоО₃ разной толщины в диапазоне (d = 8-130 нм). Видно, что для образцов разной толщины можно выделить характерные монокристаллов ДЛЯ пленок И [4, 6, 9, 10, 17] — коротковолновую $\lambda < 435$ нм и длинноволновую $\lambda > 435$ нм области поглощения. Определение края полосы поглощения пленок МоО₃ в значительной степени осложнено из-за наличия полосы поглощения в интервале $\lambda = 310-435$ нм с максимумом при λ = 360 нм. После предварительного облучения образцов светом $\lambda = 320 \, \text{нм}$ полоса поглощения с максимумом $\lambda = 360$ нм практически полностью исчезала. Оптическую ширину

запрещенной зоны пленок MoO_3 оценивали по формулам [23], используя спектры поглощения образцов, подвергнутых облучению.

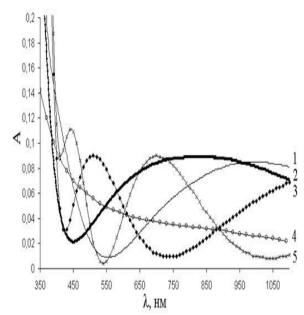


Рисунок 1 - Спектры поглощения оксида молибдена (VI) толщиной: 1 – 51 нм, 2 – 40 нм, 3 – 90 нм, 4 – 10 нм, 5 – 122 нм.

Установлено, что край полосы поглощения пленок MoO_3 находится при $\lambda \approx 320$ нм. Это значение удовлетворительно совпадает с краем полосы поглощения и оптической шириной запрещенной зоны (3,86 эВ), определенным по спектрам диффузного отражения мелкокристаллических порошков и по результатам измерений спектра пропускания тонких нанесенных на кварцевую подложку пленок MoO_3 [8].

При толщине слоев d \approx 10-20 нм на спектрах поглощения наблюдается бесструктурное поглощение. При увеличении толщины пленок MoO_3 в области края поглощения начинает формироваться размытая полоса поглощения с максимумом при $\lambda = 500$ нм. По мере увеличения толщины пленок MoO_3 (d \approx 20-70 нм) наблюдается смещение размытой полосы поглощения с максимумом при $\lambda = 500$ нм в длинноволновую область спектра с максимумом при $\lambda = 1020$ нм с одновременным формированием полосы поглощения в диапазоне $\lambda \approx 400$ -600 нм.

При толщине пленок MoO_3 d ≈ 70-90 нм проявляется максимум поглощения при $\lambda \approx 500$ нм и при $\lambda > 750$ нм наблюдается увеличение поглощения. При толщине пленок MoO_3 в диапазоне d ≈ 90-120 нм на спектрах $\PiOJ3VHOBCKU\breve{M}$ BECTHUK № 1 2013

поглощения проявляются два размытых максимума при $\lambda \approx 450$ нм и 700 нм. Появление полос поглощения и отражения в длинноволновой области спектра связано с наличием примесей, структурных и собственных дефектов и интерференцией [1-4, 6-12, 22].

На рисунках 2, 3 в качестве примера приведены спектры поглощения пленки MoO_3 толщиной d=25 нм до и после облучения светом из области собственного поглощения MoO_3 ($\lambda=320$ нм). На спектрах поглощения образца можно выделить характерные для пленок, поли- и монокристаллов MoO_3 — коротковолновую $\lambda < 435$ нм и длинноволновую $\lambda > 435$ нм области поглощения.

В процессе облучения край полосы поглощения пленки MoO_3 смещается в коротковолновую область спектра. Установлено, что область нестехиометрии, в которой сохраняется неизменная структура оксида молибдена (VI), очень мала и соответствует значению $\gamma < 0.001$ [16].

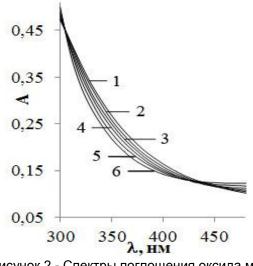


Рисунок 2 - Спектры поглощения оксида молибдена (VI) толщиной 25 нм до (1) и после облучения светом $\lambda=320$ нм I = 2,4 10^{15} квант см⁻²·c⁻¹ в диапазоне $\lambda=310-435$ нм при 293 К в течение 2 – 1 мин, 3 – 5 мин, 4 – 10 мин, 5 – 20 мин, 6 – 120 мин.

Концентрация анионных вакансий $(V_a)^{++}$ при этом составит $\approx 10^{18}$ см $^{-3}$. Было установлено [8, 20], что полоса поглощения в диапазоне $\lambda=310\text{-}435$ нм с максимумом при $\lambda=360$ нм (центр T_1) в области края собственного поглощения монокристаллов и пленок MoO_3 связана со стехиометрическим недостатком кислорода и обусловлена вакансиями кислорода с одним захваченным электроном $[(V_a)^{++}$ e].

Этот центр формируется в процессе приготовления пленок MoO_3 различной толщины, а при воздействии света $\lambda=320$ нм претерпевает фотохимическое превращение — значения оптической плотности уменьшаются и, как следствие, край полосы поглощения пленки MoO_3 смещается в коротковолновую область спектра. В длинноволновой области спектра наблюдается увеличение значений оптической плотности в интервале $\lambda=435\text{-}1100$ нм с максимумом $\lambda=870$ нм (формируется центр T_2).

При увеличении толщины образцов наблюдается последовательное возрастание эффектов изменения оптической плотности во всем исследованном спектральном диапазоне. С увеличением интенсивности падающего света в диапазоне ($I=1,5-7\ 10^{15}\$ квант см⁻²·c⁻¹) при одинаковой толщине пленок MoO_3 наблюдается возрастание эффектов изменения оптической плотности.

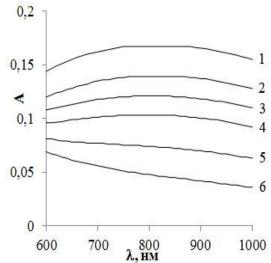


Рисунок 3 - Спектры поглощения оксида молибдена (VI) толщиной 25 нм до (6) и после облучения светом $\lambda = 320$ нм I = 2,4 10^{15} квант см⁻²·c⁻¹ диапазоне $\lambda = 435 - 1100$ нм при 293 К в течение 1 – 120 мин, 2 – 20 мин, 3 – 10 мин, 4 – 5 мин, 5 – 1 мин.

При облучении пленок MoO_3 различной толщины светом из длинноволновой области спектра ($\lambda \geq 900$ нм) наблюдаются увеличение оптической плотности в диапазоне $\lambda = 435\text{-}1100$ нм с максимумом $\lambda = 870$ нм. При воздействии на предварительно облученные при $\lambda = 320$ нм пленки MoO_3 светом $\lambda = 870$ нм наблюдается уменьшение значений оптической плотности в диапазоне $\lambda = 435\text{-}1100$ нм с максимумом $\lambda = 870$ нм. Одновременно наблюдается смещение края

полосы поглощения в длинноволновую область спектра, которое связано с увеличением оптической плотности в коротковолновой области спектра $\lambda=310\text{-}435\,\text{hm}$ с максимумом $\lambda=360\,\text{hm}$.

Для выяснения закономерностей протекания процесса стимулированного облучением пленок оксида молибдена (VI) различной толщины светом $\lambda=320$ нм были рассчитаны и построены кинетические кривые степени превращения $\alpha=f(\tau)$ (где τ – время облучения) при $\lambda=870$ нм в зависимости от толщины пленок MoO_3 и интенсивности падающего света. При построении кинетических кривых степени превращения был применен подход предложенный в [19 - 22].

Спектры поглощения пленок MoO_3 предварительно облученных светом из области собственного поглощения при различных интенсивностях и временах облучения пересекаются в одной (изобестической) точке, в которой оптическая плотность не зависит от времени воздействия света.

Слева и справа от изобестической точки поглощение $(A_{\text{обр}})$ зависит от времени фотохимической обработки, а наблюдаемая оптическая плотность его при определенном времени облучения будет складываться из поглощения, связанного с наличием центра T_1 $(A_{\text{Ll}1})$ и центра T_2 $(A_{\text{Ll}2})$:

$$A_{o\delta p} = A_{II_1} + A_{II_2}.$$

Учитывая, что падающая по нормали на поверхность какой-либо системы световая волна от источника излучения, претерпевает зеркальное отражение, рассеяние, поглощение и пропускание для расчета истинного вызванного поглощением света в веществе значения оптической плотности воспользовались уравнением [20]:

$$A_{o\delta p} = A + \lg(1 - R),$$

где A – измеряемое в реальных условиях на спектрофотометре полное значение оптической плотности включающее несколько составляющих

$$A = A_{o\delta p} + A_{omp} + A_{pac},$$

где $A_{\text{обр}}$ — значение оптической плотности образца; $A_{\text{отр}}$ — значение оптической плотности, обусловленное потерями на зеркальное отражение света поверхностью образца; $A_{\text{рас}}$ — значение оптической плотности, обусловленное потерями на диффузное рассеяние света поверхностью образца.

Итоговое выражение для определения степени фотохимического превращения центра T_1 в центр T_2 [20]:

$$\alpha = (A_{o\delta p} - A_{U_1}^1)/(A_{U_2}^1 - A_{U_1}^1),$$

где A_{L1}^{1} , A_{L2}^{1} – предельная оптическая плотность центра T_1 и центра T_2 при $\lambda = 870$ нм.

Степень фотохимического превращения центра Т₁ в центр Т₂ зависит от первоначальной толщины пленок МоО3, времени облучения и интенсивности падающего света. Независимо от толщины пленок МоО3 и интенсивности падающего света при увеличении времени облучения степень превращения возрастает. Увеличение интенсивности падающего света (при постоянной толщине пленок МоО₃) приводит к возрастанию скорости фотохимического превращения. При облучении пленок MoO_3 светом $\lambda = 870$ нм наблюдается уменьшение оптической плотности в диапазоне $\lambda = 435-1100 \text{ HM}$ С максимумом $\lambda = 870 \, \text{нм}$ и смещение края полосы поглощения МоО₃ в длинноволновую область спектра.

Мы полагаем, что уменьшение максимума поглощения при $\lambda=360$ нм, а также формирование максимума поглощения при $\lambda=870$ нм в процессе облучения пленок MoO_3 взаимосвязанные процессы и являются результатом стимулированного светом из области собственного поглощения оксида молибдена (VI) преобразования центра $[(V_a)^{++}e]$. На рис. 4 приведена диаграмма энергетических зон MoO_3 , при построении которой использованы результаты измерений спектров поглощения и отражения образцов разной толщины до и после воздействия света из различных спектральных областей.

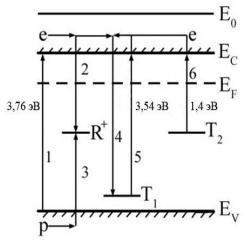


Рисунок 4 - Диаграмма энергетических зон MoO_3 . E_V – уровень потолка валентной зоны, E_F – уровень Ферми, E_C – уровень дна зоны проводимости, E_O – уровень вакуума, T_1 , T_2 – уровни центров захвата.

При облучении оксида молибдена (VI) светом из области собственного поглощения имеет место интенсивная генерация электрон-дырочных пар в MoO₃ (рис. 4, переход 1)

$$A^{2-} = p + e$$
.

Часть неравновесных носителей заряда рекомбинирует (рис. 3, переходы 2,3)

$$R^+ + e \rightarrow R^0 + p \rightarrow R^+$$

где R⁺ – центр рекомбинации.

Другая часть неравновесных электронов переходит из зоны проводимости на уровни центра T_1 (рис. 4, переход 4) участвуя в образовании центра T_2

$$e + [(V_a)^{++} e] \rightarrow [e(V_a)^{++} e].$$

При облучении пленок MoO_3 светом из длинноволновой области спектра (λ = 870 нм) имеет место стимулированный светом переход электронов с уровней центра T_2 в зону проводимости MoO_3 (рис. 4, переход 6)

$$[e(V_a)^{++}e] \rightarrow e + [(V_a)^{++}e] \rightarrow e + (V_a)^{++}.$$

Уменьшение концентрации [e (V_a)⁺⁺ e] - центров приведет и к соответствующему уменьшению оптической плотности в диапазоне $\lambda = 435\text{-}1100\,\text{hm}$ с максимумом $\lambda = 870\,\text{hm}$. Неравновесные электроны могут принимать участие в процессе восстановления Mo^{6+} , а также взаимодействовать с анионными вакансиями с образованием центров T_1

$$e + (V_a)^{++} \rightarrow [(V_a)^{++} e].$$

Формирование центров T_1 приведет к увеличению оптической плотности в диапазоне $\lambda=310\text{-}435$ нм с максимумом при $\lambda=360$ нм и, как следствие, к смещению края полосы поглощения MoO_3 в длинноволновую область спектра.

СПИСОК ЛИТЕРАТУРЫ

- 1. Третьяков Ю.Д. Химия нестехиометрических окислов. М.: Изд-во Московского унта, 1974. 364 с.
- 2. Лазарев В.Б., Соболев В.В., Шаплыгин И.С. Химические и физические свойства простых оксидов металлов. М.: Наука, 1983. 239 с.
- 3. Васько А.Т. Электрохимия молибдена и вольфрама. Киев: Наукова думка, 1977. 172 с.
- 4. Лусис А.Р., Клявинь Я.К., Клеперис Я.Я. Электрохимические процессы в твердотельных электрохромных системах // Электрохимия. 1982. Т. 18. № 11. С. 1538 1541.

- 5. Гуревич Ю.Я. Твердые электролиты. М.: Наука, 1986. 176 с.
- 6. Лусис А.Р., Клеперис Я.Я. Электрохромные зеркала - твердотельные ионные устройства // Электрохимия. 1992. Т. 28. Вып. 10. – С. 1450 – 1455.
- 7. Вертопрахов В.Н., Сальман Е.Г. Термости-мулированные токи в неорганических веществах. Новосибирск: Наука, Сибирское отд-е, 1979. 336 с.
- 8. Школьник А.Л. Оптические свойства MoO_3 // Известия АН СССР, Серия «Физика». 1967. Т. 31. № 12. С. 2030 2051.
- 9. Tubbs M.R. Optical Properties, Photographic and Holographic Applications of Photochromic and Electrochromic Layers // Brit. J. Appl. Phys. 1964. V. 15. P. 181 198.
- 10. Arnoldussen Thomas C. Electrochromism and photochromism in MoO_3 films // J. Electrochem. Sol.: Solid-State Science and Technology. 1976. V. 123. P. 527 531.
- 11. Раманс Г.М. Структура и морфология аморфных пленок триоксида вольфрама и молибдена. Рига: ЛГУ им. П.Стучки, 1987. 143 с.
- 12. Maosong Tong, Guorui Dai. WO_3 thin film prepared by PECVD technique and its gas sensing properties to NO_2 // J. of Materials Science, 2001, V. 36, P. 2535 2538.
- 13. Андреев В.Н., Никитин С.Е. Исследование фотохромных кластерных систем на основе оксидов Мо методом ЭПР-спектроскопии // Физика тв. тела, 2001, Т. 43, \mathbb{N} 4, C. 755 758.
- 14. Халманн М. Энергетические ресурсы сквозь призму фотохимии и фотокатализа. М.: Мир, 1986. С. 578.
- 15. Груздков Ю.А., Савинов Е.Н., Пармон В.Н. Фотокаталитическое преобразование солнечной энергии. Гетерогенные, гомогенные молекулярные структурноорганизованные системы. Новосибирск: Наука, 1991. С. 138.
- 16. Порай Кошиц М.А., Атовмян Л.О. Кристаллохимия и стереохимия координационных соединений молибдена. М.: Наука, 1974. 232 с.
- 17. Yao J.N., Yang Y.A., Loo B.H. Enhancement of Photochromism and Electrochromism in MoO_3/Au and MoO_3/Pt Thin Films // J. Phys. Chem. B. 1998. V. 102. P. 1856 1860.
- 18. Гончаров И.Б., Фиалко У.Ф. Ионный циклотронный резонанс в реакциях ионных кластеров оксида молибдена с аммиаком // Журн. физ. химии. 2002. Т. 76. № 9. С. 1610 1617.

- 19. Суровой Э.П., Бин С.В., Борисова Н.В. Фотостимулированные изменения в спектрах наноразмерных пленок WO₃. // Журн. физ. химии. 2010. Т. 84. № 8. С. 1539–1543.
- 20. Суровой Э.П., Борисова Н.В. Термопревращения в наноразмерных слоях MoO_3 . // Журн. физ. химии. 2008. Т. 82. № 11. С. 2120 2125.
- 21. Суровой Э.П., Бин С.В. Термические превращения в наноразмерных системах Pb -

WO₃. // Журн. физ. химии. 2012. Т. 86. № 2. С. 337 – 343.

22. Суровой Э.П., Бугерко Л.Н., Суровая В.Э., Бин С.В. Кинетические закономерности термических превращений в наноразмерных пленках. // Журн. физ. химии. 2012. Т. 86. № 4. С. 702 – 709.

23. Панков Ж. Оптические процессы в полупроводниках. – М.: Мир, 1973. – 456 с.

УДК 620.22:621:539.3

ВЛИЯНИЕ ОБЛУЧЕНИЯ НА ОПТИЧЕСКИЕ СВОЙСТВА НАНОРАЗМЕРНЫХ ПЛЕНОК ИНДИЯ

Г.О. Рамазанова, Л.И Шурыгина

В результате облучения светом $\lambda=360\,\mathrm{hm}$ и интенсивности $I=1,12\cdot10^{15}-7,0\cdot10^{15}$ квант \cdot см $^2\cdot\mathrm{c}^{-1}$ при $T=293\,\mathrm{K}$ оптическая плотность наноразмерных пленок индия ($d=1-32\,\mathrm{hm}$) уменьшается. В процессе светового воздействия на поверхности наноразмерных пленок индия формируется слой оксида индия (III). Кинетические кривые степени фотохимического превращения пленок индия удовлетворительно описываются в рамках линейного, обратного логарифмического, параболического и логарифмического законов.

Ключевые слова: наноразмерные пленки индия, фотостимулированное окисление.

Исследование процессов, протекающих при воздействии света различной интенсивности и спектрального состава в наноразмерных слоях индия, представляется необходимым как для выяснения степени общности процессов, протекающих на границе между металлом и окружающей атмосферой, так и в связи с необходимостью разработки принципиально новых материалов [1-16].

Индий используют в качестве герметика в вакуумных приборах и космических аппаратах. Покрытия из индия применяют для изготовления рефлекторов и зеркал, квантовых генераторов, солнечных батарей и жидкокристаллических экранов, транзисторов, электродов фотопроводящих элементов, резисторов, инфракрасных детекторов, специальных стекол. В качестве компонента легкоплавких сплавов индий используют в предохранителях, в радиационных контурах ядерных реакторов. Индий химически активен и поэтому при контакте с окружающей средой подвергается атмосферной коррозии [1, 9-13].

В работе представлены результаты исследований, направленных на выяснение природы и закономерностей процессов, протекающих в условиях атмосферы в наноразмерных слоях индия в зависимости от толщины материала, интенсивности и времени светового воздействия.

ОБЪЕКТЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Образцы для исследований готовили методом термического испарения в вакууме $(2\cdot10^{-3}\ \Pi a)$ путем нанесения пленок индия толщиной 1-32 нм на стеклянные подложки, используя вакуумный универсальный пост «ВУП-5М» [14, 15, 17-20]. Толщину пленок индия и оксида индия определяли спектрофотометрическим (спектрофотометр

imadzu UV-1700»), микроскопическим (интерференционный микроскоп «МИИ-4»), эллипсометрическим (лазерный эллипсометр "ЛЭФ-3М") и гравиметрическим (кварцевый резонатор) методами. Образцы экспонировали при температуре 293 К в атмосферных условиях. Источниками света служили ртутная (ДРТ-250) и ксеноновая (ДКсШ-1000) лампы. Для выделения требуемого участка спектра применяли монохроматор МСД-1 и набор светофильтров. Актинометрию источников света проводили с помощью радиационного термоэлемента РТ-0589. Регистрацию эффектов до и после световой обработки образцов осуществляли гравиметрическим и спектрофотометрическим методами. Измерения фото-ЭДС (U_{Φ}) проводили в вакууме (1·10⁻⁵ Па) на установке, включающей электрометрический вольтметр В7-30 либо электрометр TR-1501 [20]. Контактную разность ПОЛЗУНОВСКИЙ ВЕСТНИК № 1 2013