2.Индутный И.З., Костышин М.Т., Касярум О.П. и др. Фотостимулированные взаимодействия в структурах металл - полупроводник. [текст]/ И.З. Индутный, М.Т. Костышин, О.П. Касярум - Киев: Наукова думка, 1992. 240 с.

3.Пул Ч., Оуэнс Ф. Нанотехнологии. [текст]/ Ч. Пул, Ф. Оуэнс - М.: Техносфера, 2006. - 336 с.

4.Стриха В.И., Бузанева Е.В. // Физические металлосновы надежности контактов полупроводник в интегральной электронике. [текст]/ В.И. Стриха, Е.В. Бузанева - М.: Радио и связь, 1987. 254 с.

5.Кубашевский, О., Гопкинс, Б. Окисление металлов и сплавов [текст]/О. Кубашевский. Б. Гопкинс. - М.: «Металлургия», 1865. - 79 с., 307 с.

6. Томашов, Н.Д. Теория коррозии и защиты металлов - М.: «Изд. АН СССР», 1960. - 592 с.

7.Борисова Н.В., Суровой Э.П., Титов И.В. // Формирование систем «медь-оксид меди (1)» в процессе термической обработки пленок меди Ма

териаловедение. 2006. № 7. С. 16 -21.

8.Борисова Н.В., Суровой Э.П. Закономерности формирования наноразмерных систем «алюминий-оксид алюминия» в процессе термической обработки пленок алюминия // Коррозия: материалы, защита. 2007. № 6. С. 13 -18.

9. Surovoy E.P., Borisova N.V., Titov I.V. Investigation of Energy Action Influence on WO₃(MoO₃) -Metall Systems // Известия вузов. Физика. 2006. № 10. Приложение. С. 338 -341.

10. Суровой Э.П., И.В. Титов, Бугерко Л.Н. Исследование состояния поверхности азидов свинца, серебра и таллия в процессе фотолиза методом КРП // Материаловедение. 2005. № 7. С. 15 - 20.

11.Барре П. Кинетика гетерогенных процессов. М.: Мир, 1976. 400 с.

12.Волькенштейн Ф.Ф. Физико - химия поверхности полупроводников. М.: Наука, 1972. 399 C.

УДК 620.22:621:539.3

ВЛИЯНИЕ ХРОМА НА ОПТИЧЕСКИЕ СВОЙСТВА ОКСИДА ВОЛЬФРАМА (VI)

Т.М. Заиконникова, Т.Ю. Кожухова

Методами оптической спектроскопии, микроскопии, гравиметрии исследованы превращения в наноразмерных системах Cr-WO₃ в зависимости от толщины пленок Cr и WO₃, температуры и времени термообработки. Предложена модель термического превращения пленок WO₃ в системах Cr-WO₃, формирование в процессе приготовления пленки WO₃ центра ([(V_a)⁺⁺ e]), преобразование его при создании систем Cr-WO₃ в центр ([e (V_a)⁺⁺ e]).

Ключевые слова: наноразмерные пленки, термопревращения, гетерогенные системы.

ВВЕДЕНИЕ

Изучение закономерностей процессов в гетерогенных системах представляет для физики и химии твердого тела многосторонний интерес [1-4]. Постановка подобных исследований с гетерогенными наноразмерными системами, наряду с их технической актуальностью, может быть полезным инструментом для выяснения механизма процессов преврашений в твердых телах [4]. Хром. оксид вольфрама (VI) и материалы на их осноблагодаря комплексу положительных Be свойств широко применяются в различных областях науки, техники, промышленности и, как следствие, привлекают внимание исследователей различного профиля [1-4].

В настоящей работе приведены результаты исследований закономерностей и природы процессов, протекающих в условиях атмосферы в индивидуальных и двухслойных наноразмерных слоях оксида вольфрама (VI

и хрома различной толщины в зависимости от температуры и времени термообработки. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Образцы для исследований готовили методом термического испарения в вакууме (2·10⁻³ Па) путем нанесения тонких слоев Сг (10-185 нм) и WO₃ (2-60 нм) на подложки из стекла, используя вакуумный универсальный «ВУП-5М». пост Двухслойные системы Cr-WO₃ готовили путем последовательного нанесения слоев WO₃ на слой Cr (предварительно нанесенный на подложку из стекла). В качестве испарителя использовали лодочки, изготовленные из молибдена и тантала толщиной $d = 3.10^{-4}$ м. Подложками служили стекла от фотопластинок, которые подвергали предварительной обработке в растворе дихромата калия в концентрированной серной кислоте, промывали в дистиллированной воде и сушили [5,11]. Обработанные подложоптически прозрачны в ки диапазоне

300-1100 нм. Толщину пленок WO₃ и Cr определяли спектрофотометрическим, эллипсометрическим (лазерный эллипсометр «ЛЭФ-3М»), микроскопическим (интерференционный микроскоп «МИИ-4») и гравиметрическим (кварцевый резонатор) методами [5, 11]. Образцы подвергали термической обработке в сушильном шкафу «Тулячка 3П» в интервале температур 573-873 К. При этом образцы помещали на разогретую до соответствующей температуры фарфоровую пластину и подвергали термической обработке в атмосферных условиях. Регистрацию эффектов до и после термической обработки исследуемых образцов осуществляли гравиметрическим, микроскопическим и спектрофотометрическим (в диапазоне длин волн 190-1100 нм, используя спектрофотометр «Shimadzu UV-1700») методами. Измерения фотоЭДС (U_ф) проводили на высоковакуумном экспериментальном комплексе, включающем электрометрический вольтметр В7-30 [13]. В качестве источников излучения применяли ртутную (ДРТ-250) и ксеноновую (ДКсШ-1000) лампы. Для выделения требуемого участка спектра использовали монохроматоры МДР-2 и SPM-2, светофильтры. Контактную разность потенциалов (КРП) между пленками хрома, оксида вольфрама (VI) и электродом сравнения из платины измеряли, используя модифицированный метод Кельвина [14].

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В результате систематических исследований оптических свойств наноразмерных пленок WO₃, Cr и двухслойных систем Cr-WO₃ проведенных в настоящей работе и ранее было установлено, что спектры поглощения образцов до термической обработки в значительной степени зависят от толщины каждого из слоев WO₃ и Cr. При этом на спектрах поглощения систем Cr-WO₃ проявляются полосы поглощения индивидуальных пленок WO₃ и Cr. На рис. 1 приведены представительные спектры поглощения систем Cr-WO₃ с различной толщиной подслоев до термической обработки.

По мере увеличения толщины пленок хрома, при постоянной толщине пленок WO_3 , наблюдается увеличение оптической плотности систем Cr-WO₃ в диапазоне $\lambda = 300-1100$ нм. При увеличении толщины пленок WO_3 , при постоянной толщине пленок хрома, оптическая плотность систем Cr-WO₃

ПОЛЗУНОВСКИЙ ВЕСТНИК № 1 2013

также возрастает, однако, при этом в большей степени проявляется полоса поглощения в коротковолновой области спектра (λ = 300-400 нм).

Рисунок 1 - Спектры поглощения систем Cr– WO₃ с различной толщиной подслоев: *d*(Cr) = 185 (1), 160 (2), 150 (3), 137 (4), 106 (5), 64 (6), 76 (7), 24 (8); *d*(WO₃) = 19 (1), 15 (2), 17 (3), 11 (4), 80 (5), 27 (6), 27 (7), 3 (8) нм

При анализе спектров зеркального отражения было установлено, что отражательная способность систем Cr-WO₃ также зависит от толщины пленок хрома и оксида вольфрама (VI). По мере увеличения толщины пленок хрома (при постоянной толщине пленок WO₃) наблюдается увеличение отражательной способности системы Cr-WO₃ во всем исследованном диапазоне длин волн (λ = 190-1100 нм).

Для выяснения возможного взаимодействия между пленками хрома и оксида вольфрама (VI) в процессе приготовления систем Cr-WO₃ были сопоставлены экспериментальные спектры поглощения систем с рассчитанными спектрами поглощения, полученными суммированием при каждой длине волны значений оптической плотности индивидуальных пленок WO₃ и Cr аналогичной толщины. Рассчитанные и экспериментальные спектры поглощения всех исследованных систем Cr-WO₃ не совпадают. На рис. 2 в качестве примера приведены экспериментальные спектры поглощения пленок WO₃, Cr, системы Cr-WO3 и рассчитанный спектр поглощения системы Cr-WO₃. На экспериментальных кривых в коротковолновой области спектра в диапазоне $\lambda = 300-420$ нм с минимумом при $\lambda = 350$ нм наблюдается уменьшение оптической плотности.

Рисунок 2 - Экспериментальные (1, 3, 5) и рассчитанные (2, 4) спектры поглощения: Cr-WO₃ (1, 2), Cr (3), WO₃ (4, 5); d(Cr) = 66 нм, d(WO₃) = 36 нм

При термической обработке пленок Сг (толщиной d=10-185 нм) в длинноволновой области спектра (л=400-1100 нм) имеет меуменьшение, а в коротковолновой сто $(\lambda = 300-400 \text{ HM})$ увеличение оптической плотности. В процессе термической обработки оптическая плотность предварительно активированных наноразмерных пленок WO₃ (толщиной d=2-60 нм) в коротковолновой области спектра (λ = 300-400 нм с максимумом λ = 350 нм) возрастает и, как следствие, наблюдается смещение края полосы собственного поглощения в длинноволновую область спектра, а в длинноволновой области спектра уменьшается. В результате термической обработки систем Cr-WO₃ (приготовленных из пленок хрома и оксида вольфрама (VI) разной толщины) в интервале температур Т = 673-873 К в атмосферных условиях спектры поглощения и отражения образцов претерпевают существенные изменения. Причем, наблюдаемые изменения спектров поглощения и отражения, а также предельные значения оптической плотности после термической обработки образцов зависят от первоначальной толщины пленок Cr и WO₃, температуры и времени термообработки. По мере увеличения температуры, уменьшения толщины пленок оксида вольфрама (VI) и хрома при термообработке систем Cr–WO₃ в диапазоне Т = 673-873 К наблюдается увеличение эффектов изменения оптической плотности и уменьшение времени достижения ее предельного значения.

Для выяснения характера влияния пленок хрома на термические превращения в пленках оксида вольфрама (VI) в процессе термической обработки систем Cr-WO₃ были рассчитаны, построены и сопоставлены кинетические зависимости степени превращения $\alpha = f(\tau)$ (где τ – время термической обработки) пленок WO₃ (разной толщины), нанесенных на стеклянные подложки и пленки хрома, при различных температурах термообработки. Для расчета значений оптической плотности пленок WO₃ из экспериментальных спектров поглощения систем Cr-WO₃ вычитали спектры поглощения индивидуальных пленок хрома до и в процессе термообработки их при разных температурах.

При построении кинетических кривых степени превращения воспользовались подходом предложенным в [5, 11, 15]. Спектры поглощения пленок WO₃ пересекаются в одной (изобестической) точке, в которой оптическая плотность не зависит от времени термической обработки. Слева и справа от изобестической точки поглощение (A_{обр}) зависит от времени термической обработки, а наблюдаемая оптическая плотность при определенном времени термической обработки будет складываться из поглощения, связанного с наличием центра T₁ (A_{ц1}) и центра T₂ (A_{ц2}):

$$A_{obp} = A_{L1} + A_{L2}$$

Учитывая, что падающая по нормали на поверхность какой-либо системы световая волна от источника излучения, претерпевает зеркальное отражение, рассеяние, поглощение и пропускание для расчета истинного вызванного поглощением света в веществе значения оптической плотности воспользовались уравнением:

$$A_{o \delta p} = A + Ig(1 - R)$$

где А – измеряемое в реальных условиях на спектрофотометре полное значение оптической плотности, включающее несколько составляющих

$$A = A_{000} + A_{010} + A_{000},$$

где A_{обр} – значение оптической плотности образца; А _{отр} – значение оптической плотности, обусловленное потерями на зеркальное отражение света поверхностью образца; А_{рас} – значение оптической плотности, обусловленное потерями на диффузное рассеяние света поверхностью образца.

Итоговое выражение для определения степени термического превращения центра T₁ в центр T₂:

$$\alpha = (A_{L_1}^{-1} - A_{obp}) / (A_{L_1}^{-1} - A_{L_2}^{-1}),$$

где A_{Ц2}¹, A_{Ц1}¹ – предельные оптические плотности при максимальной и минимальной концентрации центров T₁.

Рисунок 3. Степень превращения центра 1 наноразмерных пленок оксида вольфрама (VI) в системах Cr–WO₃ (*1*, *3*) и в пленках WO₃ (*2*, *4*) (*d*(Cr) = 65 нм, *d*(WO₃) = 32 нм) при разных температурах: *1*,*2* - 773 K, *3*,*4* - 673 K

Было установлено, что степень превращения центра T₁ пленок WO₃ в системах Cr-WO₃ зависит от первоначальной толщины пленок WO3 и Cr, температуры и времени термической обработки. По мере увеличения времени термообработки степень превращения центра T_1 пленок WO₃ в системах Cr-WO₃ возрастает. Увеличение температуры термообработки (при постоянной толщине пленок WO₃ и Cr) приводит к возрастанию скорости термического превращения центра Т₁ пленок WO₃ (рис. 3). При увеличении толщины пленок WO₃ в системах Cr-WO₃ при постоянной температуре термообработки степень превращения во всем исследованном интервале температур уменьшается. Видно (рис. 3), что скорость превращения центра T₁ пленок WO₃ в системах Cr-WO₃ больше, чем в индивидуальных пленках WO₃.

Полученные в настоящей работе і 103 нее [5, 6, 11, 13, 14, 15] результаты исследований свидетельствуют: во-первых, о контактной природе эффектов изменения хромом скорости термического превращения пленок WO₃. Для выяснения причин, вызывающих наблюдаемые изменения металлом оптических свойств WO₃ в разных спектральных областях были измерены величина и знак U_ф для систем Cr-WO₃, КРП между WO₃, Cr и электродом сравнения из платины в условиях атмосферы ($P = 1.10^5 \Pi a$) и высокого вакуума ($P = 1.10^{-5}$ Па). Значения КРП между оксидом вольфрама (VI) и электродом сравнения из платины при понижении давления в измерительной ячейке возрастают. Наблюдаемое отличие в значениях работ выхода WO₃ и Cr свидетельствует о возможности при формировании плотного контакта и установлении в системе Cr-WO₃ состояния термоди-ПОЛЗУНОВСКИЙ ВЕСТНИК № 1 2013

намического равновесия результирующего потока электронов из хрома в оксид вольфрама (VI). В результате измерений U_ф для систем Cr-WO₃ в диапазоне λ = 300-1100 нм было установлено, что в процессе облучения светом формируется U_ф положительного потенциала со стороны слоя WO₃. Формирование U_ф для гетеросистем Cr-WO₃ прямо свидетельствует о разделении неравновесных носителей заряда на границе раздела. Из анализа результатов измерений U_ф и КРП было установлено, что при создании контакта оксида вольфрама (VI) с хромом в результате электронных переходов (со стороны WO₃) образуется обогащенный электронами антизапорный слой.

Полоса поглощения в диапазоне λ = 300-400 нм с максимумом при λ =350 нм (центр Т₁) в области края собственного поглощения монокристаллов и пленок WO₃ связана со стехиометрическим недостатком кислорода и обусловлена вакансиями кислорода ((V_a)⁺⁺) с одним захваченным электроном [(V_a)⁺⁺ e] (аналог F-центра) [8-11]. Этот центр, видимо, формируется в процессе приготовления пленок WO3 различной толщины на стеклянных подложках. Глубина залегания $[(V_a)^{++} e]$ -центра составляет $E_F^{-1} = 3,54$ эВ. Наблюдаемые изменения на экспериментальных спектрах поглощения систем Cr-WO₃ по сравнению с рассчитанными, видимо, связаны с формированием перехода Cr-WO₃. Мы полагаем, что уменьшение оптической плотности в диапазоне $\lambda = 300-400$ нм с минимумом при λ=350 нм, а также увеличение оптической плотности в длинноволновой области в процессе приготовления гетеросистем Cr-WO₃ взаимосвязанные процессы. В процессе установления термодинамического равновесия из-за несоответствия работ выхода WO₃ и Cr электроны из хрома переходят в оксид вольфрама (VI) на уровни [(V_a)⁺⁺ e] - центра с формированием [e (V_a)⁺⁺ e]-центра

 $e + [(V_a)^{++} e] \rightarrow [e (V_a)^{++} e]$

(V_a)⁺⁺ – анионная вакансия.

Оптическая энергия ионизации [e (V_a)⁺⁺ e]-центра составляет $E_{ont} \approx 1,45$ эB, а термическая $E_{терм} \approx 1,2$ эВ (на 0,2 - 0,3 эВ меньше чем оптическая [33]). Мы полагаем, что в процессе термообработки систем Cr – WO₃ возможна ионизация центра T₂, которая сопровождается переходом электронов в зону проводимости, образованием центров T₁, анионных вакансий

 $[e (V_a)^{++} e] \rightarrow e + [(V_a)^{++} e] \rightarrow 2e + (V_a)^{++}$ и восстановлением W^{6+} (зона проводимости WO₃ обусловлена уровнями W^{6+}) $e^+ \operatorname{W}^{6+} \to e^+ \operatorname{W}^{5+} \to e^+ \operatorname{W}^{4+} \to \ldots \to \operatorname{W}^0 + \operatorname{V}_{^{\kappa}}^{6-}$

Анионные вакансии и центры Т₁ будут взаимодействовать с электронами переходящими из хрома и из валентной зоны WO₃

 $e + [(V_a)^{++} e] \rightarrow [e (V_a)^{++} e]$

 $e + (V_a)^{++} \rightarrow e + [(V_a)^{++} e] \rightarrow [e (V_a)^{++} e]$

и тем самым стимулировать увеличение скорости превращения центров Т₂ пленки WO3 в системе Cr-WO3 по сравнению с превращением центра T₂ в пленке WO₃ на стеклянной подложке.

Дырки могут захватываться собственными (V_к⁶⁻) и примесными (Т) дефектами с выделением кислорода и освобождением анионных вакансий:

 $p + V_{\kappa}^{6-} \rightarrow [V_{\kappa}^{6-}p] + p \rightarrow [p \ V_{\kappa}^{6-}p] \rightarrow$ $\rightarrow O_2 + 2e + 2V_a^{++} + V_{\kappa}^{6-},$ $p + T^- \rightarrow T^0 + p \rightarrow T^+ \rightarrow O_2 + 2e + 2V_a^{++} +$ т-

где V⁶⁻ и V⁺⁺ – катионная и анионная вакансии.

Для того, чтобы обеспечить при термическом возбуждении электронной подсистемы твердого тела переход электрона с нижнего заполненного уровня на верхний незаполненный и обеспечить достаточную скорость этого процесса необходимо, чтобы средняя энергия фонона (kT) соответствовала величине преодолеваемого энергетического барьера. Оценим возможность осуществления указанного процесса в реальных условиях эксперимента. Фононы не моноэнергетичны. Их распределение по энергиям подчиняется уравнению Больцмана [16]. Уравнение для скорости процесса термического возбуждения электрона с уровней [e (V_a)⁺⁺ e]-центра на уровни вблизи дна зоны проводимости WO₃ можно представить в следующем виде

 $W = v \cdot N \cdot \exp(-\Delta E / k_0 T),$

где v – частотный фактор (для фононов по порядку величины составляет 10¹³-10¹⁴), N - концентрация [e (V_a)⁺⁺ e]-центров, ∆Е - величина преодолеваемого барьера (E = 1,2 эВ), k₀ – постоянная Больцмана (8,57·10⁻⁵ эВ/Т), Т – температура.

Методами дифференциальной сканирующей спектроскопии, дифференциального термического анализа, электронной микроскопии и рентгеновской дифракции установлено, что область нестехиометрии WO_{3-v}, в которой сохраняется неизменная структура оксида вольфрама (VI), очень мала и соответствует значению у=0,02-0,32 [5, 6, 7, 10]. Концентрация парамагнитных центров по данным ЭПР [7] составляет ~ 10¹⁸ см⁻³. Если оценить концентрацию [e (V_a)⁺⁺ e] - центров

 $N \approx 10^{16} - 10^{18}$ см⁻³ (и считать, что все электроны достигнут предназначенного для них места и не примут участия в других процессах), то в идеальном случае скорость процесса термического возбуждения электрона с уровней [е (V_a)⁺⁺ е] - центра на уровни вблизи дна зоны проводимости WO₃ составит $W_1 \approx 1.10^{19} \text{ см}^{-3} \text{ с}^{-1}$. Отсюда следует, что при термическом возбуждении электронов с уровней [e (V_a)⁺⁺ e] - центра в зону проводимости в см³ WO₃ за одну секунду переходит $\approx 1.10^{19}$ электронов. Скорость процесса термического возбуждения электронов с уровней [e (V_a)⁺⁺ e] - центра на уровни вблизи дна зоны проводимости достаточно велика, чтобы обеспечить дальнейшие превращения пленок WO₃. Увеличение концентрации электронов со стороны WO₃ в состоянии термодинамического равновесия системы Cr-WO₃ во первых обеспечивает превращение центра Т₁ в центр T₂ в пленке WO₃ и во вторых должно привести к увеличению скорости процесса термической ионизации [e (V_a)⁺⁺ e] - центра. Наблюдаемые закономерности изменения хромом оптических свойств WO₃ соответствуют изложенной модели процессов.

СПИСОК ЛИТЕРАТУРЫ

1.Суровой Э.П., Борисова Н.В. Термические превращения в наноразмерных слоях меди // Журн. физ. химии. 2010. Т. 84. № 2. С. 307–313.

2.Суровой Э.П., Бин С.В. Термические превращения в наноразмерных системах Pb - WO₃ // Журн. физ. химии. 2012. Т. 86. № 2. С. 337–343.

3.Индутный И.З., Костышин М.Т., Касярум О.П. и др. Фотостимулированные взаимодействия в структурах металл - полупроводник. Киев: Наукова думка, 1992. 240 с.

4.Стриха В.И., Бузанева Е.В. Физические основы надежности контактов металл-полупроводник в интегральной электронике. М.: Радио и связь. 1987. 254 c.

5. Суровой Э.П., Борисова Н.В. Термические превращения в наноразмерных слоях меди // Журн. физ. химии. 2010. Т. 84. № 2. С. 307.

6. Суровой Э.П., Бугерко Л.Н., Расматова С.В. Кинетические закономерности влияния продуктов на фотолиз азида свинца // Журн. физ. химии. 2004. Т. 78. № 4. С. 663.

7. Третьяков Ю.Д. Химия нестехиометрических окислов. М.: Изд-во Московского ун-та, 1974. 364 c.

8. Гуревич Ю.Я. Твердые электролиты. М.: Наука, 1986. 176 с.

9. Фаунен Б.В., Крэнделл Р.С. // Дисплеи. М.: Мир, 1982. 316 с

10. Клявинь Я.К., Лагздонс Ю.Л., Лусис А.Р. // Физика и химия стеклообразующих систем. 1976. № 4. С. 141.

11. Суровой Э.П., Бин С.В., Борисова Н.В. Фотостимулированные изменения в спектрах наноразмерных пленок WO₃ // Журн. физ. химии. 2010. Т. 84. № 8. С. 1539.

12.Суровой Э.П., Бин С.В., Борисова Н.В. Коррозия наноразмерных пленок свинца // Коррозия: материалы, защита. 2008. № 11. С. 4.

13. Суровой Э.П., Бугерко Л.Н., Захаров Ю.А. и др. Закономерности формирования твердофаз-

УДК 620.22:621:539.3

ного продукта фотолиза гетеросистем азид свинца -металл// Материаловедение. 2002. № 9. С. 27.

Суровой Э.П., И.В. Титов, Бугерко Л.Н. Исследование состояния поверхности азидов свинца, серебра и таллия в процессе фотолиза методом КРП // Материаловедение. 2005. № 7. С. 15 - 20.

Суровой Э.П., Бин С.В., Борисова Н.В. и др. Влияние предварительной активации на оптические свойства наноразмерных слоев WO₃ // Ползуновский вестник. 2010. № 3. С. 188.

14. Панков, Ж. Оптические процессы в полупроводниках. М.: Мир, 1973. 456 с.

ФОТОЭЛЕКТРИЧЕСКИЕ ИССЛЕДОВАНИЯ НАНОРАЗМЕРНЫХ СИСТЕМ Pb – PbO и Pb – WO₃

С.В. Бин, А.И. Мохов

Измерена контактная разность потенциалов до и после предварительного прогрева (T = 550 К) наноразмерных пленок свинца, оксидов свинца (II) и вольфрама (VI) при различных внешних условиях ($P = 1 \cdot 10^5$, $1 \cdot 10^5$ Па; T = 293 К). Проведены измерения фото-ЭДС систем Pb – PbO, Pb - WO₃. Построены диаграммы энергетических зон систем Pb – PbO, Pb - WO₃.

Ключевые слова: свинец, оксиды свинца (II) и вольфрма (VI), наноразмерные пленки, геторосистемы.

ВВЕДЕНИЕ

Изучение закономерностей процессов, протекающих в гетерогенных системах под действием различных энергетических факторов, представляют для физики и химии твердого тела многосторонний интерес [1-8]. Постановка подобных исследований с гетерогенными наноразмерными системами, наряду с их технической актуальностью [1-4, 9], может быть полезным инструментом для выяснения механизма процессов превращений в твердых телах [6-8]. Свинец, оксид вольфрама (VI) и материалы на их основе благодаря комплексу положительных свойств широко применяются в различных областях науки, техники, промышленности и, как следствие, привлекают внимание исследователей различного профиля [1-24]. Оксид вольфрама (VI) используют как исходный материал для получения вольфрама, его сплавов и других соединений. Устройства на основе оксида вольфрама (VI) могут быть рекомендованы к использованию в качестве электрохромных и фотохромных дисплеев, светоперераспределяющих фильтров или электрохромных зеркал [2, 7, 10, 11], сенсоров для контроля содержания газов в атмосфере [7]. Свинец в качестве конструкционного материала применяется в целях радиационной защиты, для изготовления обечаек и плакирующих покрытий химических аппаратов, защитных покрытий кабелей и электродов аккумуляторов [13, 18]. Однако свинец в атмосферных условиях термодинамически неустойчив [13]. Упругость диссоциации оксида свинца (II) при Т ≥ 423 К достаточно низка (~ 3,1·10⁻³⁶ кПа) и поэтому при контакте с окружающей средой свинец подвергается атмосферной коррозии [13]. Оксид свинца применяют в производстве стекол с высоким показателем преломления, а тонкие свинцовые слои, «просветленные» оксидом, могут применяться для изготовления теплоотражающих покрытий [14]. Создание контактов свинца со светочувствительными материалами приводит к изменению фоточувствительности последних [19].

В настоящей работе представлены результаты фотоэлектрических исследований наноразмерных систем Pb – PbO и Pb – WO₃, направленных на выяснение природы границ раздела между контактирующими материалами и построение диаграмм энергетических зон исследуемых гетеросистем.

ОБЪЕКТЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Образцы для исследований готовили методом термического испарения в вакууме (2·10⁻³ Па) путем нанесения тонких слоев Pb (5-135 нм) и WO₃ (7-160 нм) на подложки из стекла, используя вакуумный универсальный