ХИМИЯ И ПЕРЕРАБОТКА РАСТИТЕЛЬНОГО СЫРЬЯ

ПОЛУЧЕНИЕ АЦЕТОНЛИГНИНА ИЗ ГИДРОТРОПНОГО ЛИГНИНА

С.Г. Ильясов, В.А. Черкашин, Г.В. Сакович, Д.А. Пархоменко

Проведена деполимеризация гидротропного лигнина, полученного из лигноцеллюлозного материала (Miscanthus sinensis-Andersson), заключающаяся в обработке исходного сырья горячей водой при температуре кипения и атмосферном давлении. Процесс гидролиза заканчивается образованием двух модифицированных видов лигнина, отличающихся между собой растворимостью в органических растворителях. Образец, полученный экстракцией ацетоном, в своей структуре содержит карбонильную (кето) группу. Кетолигнин по физико-химическим свойствам относится к термопластичным полимерам с температурой размягчения 84–95°С.

Ключевые слова: гидротропный лигнин, ацетонлигнин, деполимеризация, гидротермообработка, organosolve.

ВВЕДЕНИЕ

На сегодняшний день перспективным видом возобновляемого растительного сырья для получения целлюлозы рассматривается энергетическая культура – мискантус [1-3].

Одним из актуальных вопросов при получении целлюлозы является проблема переработки лигнина в полезные продукты. В этом аспекте лигнин рассматривается как ингредиент композиционных материалов, например, в роли экологического связующего в древесностружечных плитах [4].

Представляет интерес проведение исследований термического гидролиза с индивидуальным образцом лигнина, который бы не содержал примеси целлюлозы, гемицеллюлозы, жирных эфиров и кислот, и был бы близким по своим свойствам к нативному. В качестве такого объекта исследований был выбран образец гидротропного лигнина, полученного по методу, описанному в работе [1].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК-спектры образцов лигнина в KBr записывали на ИК-Фурье-спектрофотометре «ФТ-801» в области от 4000 до 500 см⁻¹.

Спектры ЯМР ¹Н и ¹³С регистрировали на спектрометре Bruker Avance III с рабочей частотой 400 МГц (ЯМР ¹Н) и 100 МГц (ЯМР ¹³С), растворитель – ДМСО-d6. Число сканов (ЯМР ¹³С) – 15000.

Элементный анализ проведен на элементном анализаторе Flash EA[™] 1112 фирмы «Thermo Quest».

Термоаналитические исследования проводили в условиях программируемого линейного нагрева на дифференциально-сканирующем калориметре DSC822e/400, и модуле термогравиметрического и дифференциального термического анализа TGA/SDTA851e/ LF/1600 фирмы «METTLER TOLEDO» в политермическом режиме (в атмосфере азота, при скорости нагрева 10 °С/мин).

Исследования гель-проникающей хроматографией проводили на жидкостном хроматографе Agilent LC 1200 с колонкой PLgel MIXED С (размер частиц 5 мкм, диапазон масс: 2·102-2·106 г/моль) при 25 °С. В качестве подвижной фазы использовали тетрагидрофуран. Хроматограммы записаны с использованием рефрактометрического детектора. Калибровка была сделана с использованием узких стандартов полистирола. Приготовление образцов: 1 мг лигнина растворяли в 1 мл тетрагидрофурана и оставляли раствор на 3 часа при 25 °С для лучшего растворения полимера.

Метоксильные группы анализировали двумя методами. Первый метод применяли согласно методике [5].

Второй метод осуществляли по методике [6], с непосредственным получением HJ в реакционной смеси: в круглодонную колбу вместимостью 50 мл помещали 50 мг исследуемого вещества, 1 г иодида калия, 2 мл ортофосфорной кислоты, закрывали обратным холодильником и выдерживали на глицериновой бане (150 °C) в течение 15 мин. После охлаждения колбы с продуктами реакции до комнатной температуры через обратный холодильник вносили 10 мл дистиллированной воды, 10 мл четыреххлористого углерода (пипеткой Мора). Затем колбу с обратным холодильником энергично встряхивали в течение 10 мин для экстракции иодистого метила. После отстаивания содержимого колбы пипеткой отбирали нижний органический слой, переносили в делительную воронку с раствором сульфита натрия. Делительную воронку встряхивали до полного обесцвечивания органического слоя. После отстаивания содержимого делительной воронки органический слой сливали в пробирку с безводным сульфатом натрия и закрывали притертой пробкой.

Условия хроматографирования следующие: хроматограф газовый Кристаллюкс 4000М, детектор – пламенно-ионизационный, колонка – Phenomenex с фазой ZB-1 (100 % диметилполисилоксан), длина 60 м, внутренний диаметр 0,32 мм, газ носитель – азот, температура колонки – 85 °С, температура детектора – 150 °С, температура испарителя – 120 °С, скорость потока газа-носителя – 20 мл/мин, объем вводимой пробы – 1 мкл.

Объектом исследования являлся гидротропный лигнин (ГЛ), полученный из мискантуса китайского (Beepник китайский Miscanthus sinensis – Andersson), урожая 2008 г., выращенного на плантациях Института цитологии и генетики СО РАН в Новосибирской области [7].

Сырье анализировали по стандартным методикам: м.д. золы – методом озоления в муфельной печи «Nabertherm» [8], м.д. кислотонерастворимого лигнина –сернокислотным методом [8]. Результаты определения приведены в пересчете на абсолютно сухое сырье (a.c.c).

Получение гидротропного лигнина. Гидротропный лигнин получали по методу [1].

Получение ацетонлигнина (АЛ) из гидротропного лигнина. К 150 мл дистиллированной воды присыпают 14,5 г гидротропного лигнина. Суспензию нагревают с обратным холодильником до кипения и выдерживают 5 мин. По окончании выдержки порошок отфильтровывают и высушивают в течение 24 ч при температуре 25 °С. Измельченный порошок растворяют в ацетоне при 25 °С. Ацетоновый раствор фильтруют и испаряют на роторном испарителе в вакууме. Получают 6,2 г ацетонлигнина. Полученный АЛ представляет собой порошок коричневого цвета с характеристиками указанными в таблице 3.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В проведенных исследованиях в качестве селективного экстрагента при получении органорастворимого лигнина использовался ацетон. Это связано с тем, что ацетон не вступает во взаимодействие с лигнином. Исходя из наименования применяемого экстрагента, полученный продукт был назван ацетонлигнином.

Гидротропный лигнин был исследован на

устойчивость к горячей воде при атмосферном давлении.

Гидролиз ГЛ проводили горячей водой при 100 °С в течение 5-90 мин при атмосферном давлении. Было выявлено, что гидротермальная обработка лигнина способствует увеличению растворимости в ацетоне. Наилучшие результаты по извлечению ацетонлигнина из ГЛ получены при кипячении образца в воде в течение 1 ч. Длительное кипячение (до 3 ч) образца ГЛ не способствует увеличению выхода ацетонлигнина.

Таблица 1 – Исчерпывающая растворимость ацетонлигнина в органических растворителях при 25°С

Nº	Растворитель	М.д. сухих веществ экстракта, %*	Нераство- римый остаток,%*		
1	трибутилфосфат	100	0		
2	диметилсульфоксид	100	0		
3	диметилформамид	100	0		
4	уксусная кислота	100	0		
5	диоксан	100	0		
6	ацетон	100	0		
7	метанол	97	3		
8	этанол	90	10		
9	хлороформ	60	40		
10	диэтиловый эфир	4	96		
11	толуол	0	100		
12	гексан	0	100		
Примечание: * – в расчете на массу, взятую для экстракции.					

Была исследована экстракция полученного ацетонлигнина различными растворителями. Навеска АЛ подвергалась исчерпывающему растворению при 25 °С в органических растворителях. Была составлена классификационная таблица экстрагируемости АЛ (таблица 1).

Характеристика молекулярно-массового распределения образца ацетонлигнина представлена в таблице 2.

Из таблицы 2 видно, что ацетонлигнин относится к узкодисперсным полимерам (PDI=1,51).

ХИМИЯ И ПЕРЕРАБОТКА РАСТИТЕЛЬНОГО СЫРЬЯ

Таблица 2 – Характеристика	MMP	образца

ацетонлигнина						
Образец	Mn*, г/ моль	Mw**, г/моль	PDI***			
Ацетонлигнин	690 1040		1.51			
Примечание: * – среднечисловая молекулярная масса, ** – средневзвешенная молекулярная масса, *** – коэффициент полидисперсности (PDI=Mw/Mn).						

Сравнение результатов элементного анализа показывает, что АЛ содержит меньше кислорода (26,06%), чем ГЛ (31,42%) и нерастворимый остаток в ацетоне (НОА) (30,25%) (таблица 3).

Габлица 3 – Результаты аналитических исследований ра	азличных видов лигнинов
--	-------------------------

Наимено- вание	Элем С, %	ентный Н, %	анализ О, %	-OCH3, %*	Золь- ность,%*	М.д. кислото- нераство- римого лигнина,%*	Брутто-формула ФПЕ, М. масса, а.у.е. (расчет)
ГЛ	61,00	5,50	31,42	4,48**/ 11,83***	2,08	88,0	C _{9,00} H _{9'15} O _{3,31} (OCH ₃) _{0.26} (178,4)** C _{9,00} H _{8,26} O _{3,02} (OCH ₃) _{0.73} (187,0)***
АЛ	67,70	6,00	26,06	2,19**/ 9,24***	0,24	86,8	$\frac{C_{9,00}H_{9,04}O_{2,52}(OCH_3)_{0,11} (160,9)^{**}}{C_{9,00}H_{8,27}O_{2,24}(OCH_3)_{0,50} (167,7)^{***}}$
HOA	58,10	5,40	30,25	4,48**/ 11,62***	6,25	97,8	C _{9,00} H _{9,11} O _{3,34} (OCH ₃) _{0,28} (179,3)** C _{9,00} H _{8,25} O _{3,05} (OCH ₃) _{0,75} (188,5)***
Примечание: * – в расчете на массу, взятую для опыта, ** – метоксильные группы определены по методу [6], *** – метоксильные группы определены по методу [5].							

Известно [9], что для ацетосолв и формосолв, полученных из Miscanthus x giganteus, содержание метоксильных групп соответствует $C_9H_{6.87}O_{2.19}(OCH_3)_{1.01}$ и $C_9H_{7.04}O_{2.64}(OCH_3)_{0.65}$.

Рисунок 1 – Модельные фенилпропановые единицы (ФПЕ).

Низкое содержание метоксильных групп (0,11 или 0,50) для ацетонлигнина свидетельствует о преимущественном строении ФПЕ H(H') – n-оксифенильного звена (рисунок 1). В пользу такого предположения в ИК-спектре АЛ отсутствуют полосы колебаний на 1330 см⁻¹ (S), и ароматические плоскостные колебания на 1126 (S) и 1032 см⁻¹ (G), и внеплоскостные колебания на 916 см⁻¹ (G) (таблица 4). Идентификацию полос ИК-спектра ацетонлигнина проводили в соответствии с литературными данными [10].

В ИК-спектре образца АЛ содержится интенсивный сигнал полосы колебания в области 1702 см⁻¹, характерный для карбонильной группы (таблица 4).

Исследование структуры ацетонлигнина ЯМР-спектроскопией (рисунок 2) показало, что в спектрах ¹³С, в диапазоне 90-54 м.д. отсутствуют сигналы с XC 92,8 и 85-86 м.д., принадлежащие в лигнине атомам С_в в связях β-O-4 [11].

Сигналы для углеродов в спектре ¹³С на 207 ррт свидетельствуют о содержании карбонильных (кетон) групп, сигнал на 175 ррт – о сложноэфирных группировках и карбоксильных группах, а сигнал на 56 ррт – о метоксильных группах в структуре вещества. Кроме того, спектр ¹³С содержит сигналы, которые можно отнести к следующим фрагментам: метиленовый алифатической цепи (66, 31, 29 ррт), гидроксибензальдегидный (167, 133, 129, 115 ррт), сирингильный (148, 147, 132, 106 ррт), гваяцильный (148, 147, 134, 128, 115, 110 ррт).

ХИМИЯ И ПЕРЕРАБОТКА РАСТИТЕЛЬНОГО СЫРЬЯ

Наименование	[9] *, (cm⁻¹)	АЛ, (cm⁻¹)
С=О валентные колебания в несвязанных кетонах, карбонильных группах и эфирных группах	1725	1702(c.)
С=О валентные колебания в связанных альдегидах и карбоновых кислотах	1695	-
С=О в сопряженных р-замещенных арилзамещенных кетонах	1636	-
скелетные колебания ароматического кольца	1600	1603
скелетные колебания ароматического кольца	1505	1514
С-Н асимметричные деформационные колебания в -СН ₃ и -СН ₂ -	1460	1452
ароматическое скелетное колебание, объединенное с плоскостной деформацией С-Н	1425	1427
алифатические С-Н в -СН ₃	1370	1366
кольца конденсированных S и G (замещенных в одном из положений в кольце)	1330	-
Не идентифицировано	_	1317
«дыхание» кольца G- звена с полосой С=О	1268	1268
С-С, С-О и С=О полоса	1226	1221
С-О в сложных эфирных группах	1166	1174
ароматический С-Н внутриплоскостная деформация, характерная для S звена	1126	_
Не идентифицировано	—	1117
С-О деформация во вторичных спиртах и алифатических эфиров	1086	-
ароматический С-Н внутриплоскостная деформация, G > S; С-О деформация в первичных спиртах	1032	_
Не идентифицировано	_	1026
С-Н внеплоскостное в положении 2, 5, и 6 G звена	870	_
С-Н внеплоскостное в положении 2, и 6 S звена и во всех положениях для H звена	835	835
Не идентифицировано	_	715
Примечание: с. – сильная, * – ИК-спектр сравнения.		

Таблица 4 – Данные ИК-спектра ацетонлигнина

Рисунок 2 – ¹³С NMR-спектр ацетонлигнина.

В протонном спектре ацетонлигнина (рисунок 3) сумма относительной интегральной интенсивности (ОИИ) протонов ароматического кольца (АК) соотносится к сумме ОИИ протонов метоксильных групп, как 1:0,77, что свидетельствует о преобладании структуры H(H') – n-оксифенильного звена. Таким образом, проведенные качественные исследования показывают, что в структуре ацетонлигнина присутствуют все три основных типа фенилпропановых единиц - гваяцильные, сирингильные и гидроксибензальдегидные. Однако химический анализ на содержание метоксильных групп показывает, что очень низкое содержание их в АЛ – 2,19 % (9,24%) свидетельствует о преимущественном содержании структуры H(H') – n-оксифенильного звена.

Рисунок 3 – ¹Н NMR-спектр ацетонлигнина

Результаты исследований дифференциально-сканирующей калориметрии и термогравиметрического анализа показывают, что ацетонлигнин имеет температуру размягчения в интервале 84-95 °С. Повторный нагрев исследуемого образца показывает воспроизводимость результатов измерений температуры размягчения.

Низкая температура размягчения образцов ацетонлигнина характеризуется как полезное свойство термопластичных веществ. В связи с этим АЛ можно рассматривать как ингредиент композиционных материалов в качестве связующего компонента.

выводы

Методом гидротермальной деполимеризации гидротропного лигнина, полученного из лигноцеллюлозного материала (Miscanthus sinensis-Andersson), удалось получить модифицированную форму лигнина – ацетонлигнин. АЛ растворяется во многих органических растворителях (органосолв), содержит в своей структуре кетонную группу и обладает свойствами термопластичных веществ.

СПИСОК ЛИТЕРАТУРЫ

1. Митрофанов Р.Ю., Будаева В.В., Денисова М.Н., Сакович Г.В. Гидротропный метод получения целлюлозы из мискантуса // Химия растительного сырья. – 2011. – № 1. – С. 25-32.

2. Jones M.B., Walsh M. Miscanthus: For Energy and Fibre. London: Published by James & James (Science Publishers) Ltd. – 2001. – 192 p.

3. Shumny V. K. A new form of Miscanthus (Chinese silver grass, Miscanthus sinensis -Anderson) as a promising source of cellulosic biomass / V.K. Shumny., S. G.Veprev, N.N. Nechiporenko, T.N. Goryachkovskaya, N.M. Slynko, N.A. Kolchanov, S.E. Peltek // Advances in Bioscience and Biotechnology. – 2010. – Vol. 1. – P.167-170.

4. Функциональный состав и связующие свойства лигнинов, полученных при уксусно-кислотной делигнификации растительного сырья : тезисы докладов Всероссийской научно-практической конференции «Лесной и химический комплексы – проблемы и решения», г. Красноярск, 3–4 декабря 2010 г. – Красноярск : Редакционно-издательский центр СибГТУ, 2010. – С. 456.

5. Болотин Д.Б., Черных А.Г. Методика определения метоксильных групп в лигнинсодержащих препаратах // Химия древесины. – 1982. – № 5. – С. 109-110. 6. Закис Г.Ф. Функциональный анализ лигнинов и их производных. – Рига: Зинатне, 1987. – С. 23-28.

7. Шумный В.К. и др. Новая форма Мискантуса китайского (Веерника китайского Miscanthus sinensis –Anders) как перспективный источник целлюлозосодержащего сырья // Информационный вестник ВОГиС. – 2010. – Т. 14, № 1 – С. 122-126.

8. Оболенская А.В., Ельницкая З.П., Леонович А.А. Лабораторные работы по химии древесины и целлюлозы: учебное пособие для вузов. – М.: Экология, 1991. – 320 с.

9. Villaverde J. J., Li J., Ek M., Ligero P., Vega A. Native Lignin Structure of Miscanthus x giganteus and Its Changes during Acetic and Formic Acid Fractionation// J. Agric.Food Chem. – 2009. – № 57. – P. 6262–6270.

10. Wang K., Bauer S., Sun R. C. Structural Transformation of Miscanthus x giganteus Lignin Fractionated under Mild Formosolv, Basic Organosolv, and Cellulolytic Enzyme Conditions//J. Agric.Food Chem. $-2012. - N^{\circ} 60. - P. 144-152.$

11. Калабин Г.А., Каницкая Л.В., Кушнарев Д.Ф. Количественная спектроскопия ЯМР природного органического сырья и продуктов его переработки. – М.: Химия, 2000. – 408 с.

Ильясов Сергей Гаврилович, заместитель директора по научной работе, д.х.н. Федерального государственного бюджетного учреждения науки Института проблем химико-энергетических технологий Сибирского отделения Российской академии наук, 659322, г. Бийск, ул. Социалистическая, 1 (Россия), тел./факс: (3854) 30-59-37, e-mail: ilysow@ ipcet.ru.

Черкашин Виктор Александрович, ведущий инженер Федерального государственного бюджетного учреждения науки Института проблем химикоэнергетических технологий Сибирского отделения Российской академии наук, 659322, г. Бийск, ул. Социалистическая, 1 (Россия); тел.: (3854) 30-14-89, e-mail: vikt12009@yandex.ru.

Сакович Геннадий Викторович, Советник РАН, научный руководитель института, академик РАН Федерального государственного бюджетного учреждения науки Института проблем химико-энергетических технологий Сибирского отделения Российской академии наук, 659322, г. Бийск, ул. Социалистическая, 1 (Россия); тел.: (3854) 30-59-55, факс (3854) 30-30-43, e-mail: admin@ipcet.ru.

Пархоменко Д.А., лаборант Института «Международный томографический центр» Сибирского отделения Российской академии наук, 630090, г. Новосибирск, ул. Институтская, За (Россия), тел.: 89039304014.