РАЗДЕЛ 1. МОДЕЛИРОВАНИЕ, РАСЧЕТ И ОБРАБОТКА ДАННЫХ В АВТОМАТИЗИРОВАННЫХ СИСТЕМАХ УДК 620.179.14

КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ РАЗЛИЧНЫХ КОНСТРУКТИВНЫХ ВАРИАНТОВ НАКЛАДНОГО ВИХРЕТОКОВОГО ПРЕОБРАЗОВАТЕЛЯ ДЕФЕКТОСКОПА

А.Е. Гольдштейн, В.Ю. Белянков

В статье описаны разработанные в среде Comsol Multiphysics модели различных накладных вихретоковых преобразователей, используемых в дефектоскопах ручного контроля. С помощью данных моделей определены сигналы вихретоковых преобразователей, возникающие в результате взаимодействия магнитного поля преобразователя с электропроводящей немагнитной пластиной, имеющей протяженный поверхностный дефект типа прорезь. Осуществлен сравнительный анализ результатов взаимодействия для разных конструктивных вариантов накладного преобразователя.

Ключевые слова: неразрушающий контроль, вихревой ток, накладной вихретоковый преобразователь, протяженный поверхностный дефект.

Введение

Основными достоинствами вихретоковых дефектоскопов, определяющих их достойное место среди других средств неразрушающего контроля, являются отсутствие необходимости контакта с поверхностью объекта контроля, безопасность и высокая скорость контроля, высокая чувствительность к разнообразным поверхностным дефектам, возможность регулирования толщины контролируемого слоя, возможность автоматизации процесса контроля.

Технические характеристики вихретоковых дефектоскопов в значительной мере определяются конструкцией используемых вихретоковых преобразователей (ВТП). Возможности и особенности применения для дефектоскопии различных конструктивных вариантов ВТП могут быть проанализированы с использованием пакета компьютерного моделирования Comsol Multiphysics, в котором осуществляется численное решение уравнений в частных производных методом конечных элементов. Ранее возможности данного пакета были исследованы при моделировании магнитных преобразователей [1]. Построенные в среде моделирования трехмерные модели преобразователя позволяют осуществлять анализ влияния на функцию преобразования как его основных конструктивных параметров, так и основных влияющих факторов даже при значительной сложности конфигурации обмоток и заданных граничных условий.

Постановка задачи исследований

Объектами моделирования являлись различные конструктивные варианты накладного трансформаторного планарного ВТП с возбуждающей и измерительной обмотками, лежащими в одной плоскости: абсолютный, дифференциальный и мультидифференциальный. В качестве объекта контроля рассматривалась дюралевая пластина с удельной электрической проводимостью материала $\sigma = 30$ МСм/м, толщиной 4 мм и размерами 20×40 мм² с поперечным поверхностным дефектом по центру в виде прорези глубиной 2 мм и шириной 0,4 мм. Во всех случаях предполагалось, что перемещение ВТП над поверхностью пластины осуществляется с зазором 2 мм вдоль продольной оси симметрии пластины *ОY* из бездефектной области с пересечением области дефекта снова в бездефектную область.

С целью сопоставимости результатов моделирования для всех исследуемых ВТП габаритные размеры выбирались примерно одинаковыми. Частота тока возбуждения и произведение силы тока возбуждения на число витков задавались равными соответственно 100 кГц и 100 ампер-витков. Число витков измерительной обмотки было выбрано равным 100.

Моделирование ВТП в среде COMSOL Multiphysics

Для создания 3D моделей преобразователей использовался физический AC/DC модуль раздела Magnetic fields. Построение геометрии элементов ВТП и объекта контроля осуществлялось с помощью встроенного графического интерфейса в разделе Geometry. Свойства материалов отдельных элементов выбирались из стандартной библиотеки в разделе Materials с корректировкой стандартных характеристик вручную.

При задании начальных и граничных условий принималось, что обмотка возбужде-

ПОЛЗУНОВСКИЙ ВЕСТНИК № 2, 2014

КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ РАЗЛИЧНЫХ КОНСТРУКТИВНЫХ ВАРИАНТОВ НАКЛАДНОГО ВИХРЕТОКОВОГО ПРЕОБРАЗОВАТЕЛЯ ДЕФЕКТОСКОПА

ния геометрически выполнена в виде одного витка, описываемого с помощью кривых Безье третьего порядка, с силой тока равной ампер-виткам обмотки возбуждения.

При наложении сетки, от параметров которой напрямую зависит точность результата вычислений, для областей с более высоким градиентом изменения индукции магнитного поля выбиралась и более мелкая сетка.

Для проведения различных математических операций, в том числе интегрирования, для определения вносимого напряжения измерительной обмотки, использовался раздел Derived Values. Для визуализации результатов и просмотра интересующих областей использовались 3D, 2D и 1D Plot Group.

Результаты моделирования

На рисунке 1 схематично показан абсолютный ВТП с круглыми обмотками (ВТП-1). Здесь и далее: 1 – обмотка возбуждения; 2 измерительная обмотка; 3 – прорезь. Диаметр обмотки возбуждения для 3D модели был выбран 12 мм, а измерительной – 10мм.

Рисунок 1 – Абсолютный ВТП с круглыми обмотками над прорезью

На рисунке 2 линиями одинаковой плотности показано полученное в среде Comsol Multiphysics распределение плотности вихревого тока, индуцированного обмоткой возбуждения для случаев расположения ВТП-1 над бездефектным участком (рисунок 2*a*) и симметрично относительно прорези (рисунок 2*б*). По густоте и форме линий можно судить о пространственном распределении вихревого тока.

Для наглядности приведена только часть картины вихревых токов, ограниченная вертикальной плоскостью симметрии ВТП. Рисунок 2*в* дополняет рисунок 2б видом сбоку (в вертикальной плоскости симметрии ВТП).

Следует отметить, что если в случае расположения рассматриваемого ВТП над бездефектным участком максимальная плотность вихревого тока наблюдается на поверхности пластины, то для случая расположения ВТП над дефектом максимальная

А.Е. ГОЛЬДШТЕЙН, В.Ю. БЕЛЯНКОВ

плотность вихревых токов имеет место на нижних ребрах прорези, а повышенная плотность вихревых токов – на вертикальных и горизонтальных гранях прорези.

Рисунок 2 – Картина вихревых токов на поверхности пластины при взаимодействии с полем ВТП-1

На рисунке 3 показаны годографы вно-

Рисунок 3 – Годографы вносимого напряжения ВТП-1 от дефекта и изменения зазора

РАЗДЕЛ 1. МОДЕЛИРОВАНИЕ, РАСЧЕТ И ОБРАБОТКА ДАННЫХ В АВТОМАТИЗИРОВАННЫХ СИСТЕМАХ

симого напряжения ВТП-1 от перемещения преобразователя над дефектом (сплошная линия) и от изменения зазора Δh над поверхностью пластины (пунктирная линия)

На рисунке 4 приведена зависимость амплитуды вносимого напряжения от местоположения преобразователя относительно дефекта. Амплитуда сигнала от дефекта максимальна при центральном положении обмотки относительно дефекта (Y = 0). Фаза вносимого напряжения при изменении зазора практически не изменяется и отличается от фазы вносимого напряжения от дефекта (рисунок 3), что широко используется в вихретоковой дефектоскопии для амплитуднофазовой отстройки от влияния изменения зазора. Однако такая отстройка эффективна только в малом диапазоне изменений зазора при высокой однородности электрических и магнитных характеристик материала объекта контроля, да и само наличие у абсолютного преобразователя большого по значению начального напряжения является существенным недостатком. Более эффективны для

Рисунок 5 – Дифференциальный ВТП с прямоvгольными обмотками над прорезью

использования в вихретоковых дефектоскопах дифференциальные ВТП.

На рисунке 5 схематично показан один из вариантов дифференциального планарного ВТП с прямоугольными обмотками (ВТП-2).

Рисунок 6 – Картина вихревых токов на поверхности пластины при взаимодействии с полем ВТП-2

При создании 3D модели размеры секций обмотки возбуждения 1 и измерительной обмотки 2 выбирались равными 10×3 мм². Направления тока в секциях обмотки возбуждения показаны стрелками. Особенностью ВТП такой конструкции является использование для обнаружения протяженных дефектов возбуждения вихревых токов того же направления, что и направление дефекта. С этой точки зрения ВТП-2 по своим свойствам близок к так называемому «ионическому» ВТП, предлагаемому в [2].

На рисунке 6 показано распределение плотности вихревого тока, индуцированного обмоткой возбуждения, для случаев расположения дифференциального ВТП-2 над бездефектным участком (рисунок 6*a*) и симметрично относительно прорези (рисунки 66,6*в*).

На рисунке 7 показан годограф вносимого напряжения ВТП-2 от перемещения преобразователя над дефектом, а на рисунке 8 – зависимость амплитуды вносимого

ПОЛЗУНОВСКИЙ ВЕСТНИК № 2, 2014

КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ РАЗЛИЧНЫХ КОНСТРУКТИВНЫХ ВАРИАНТОВ НАКЛАДНОГО ВИХРЕТОКОВОГО ПРЕОБРАЗОВАТЕЛЯ ДЕФЕКТОСКОПА

напряжения от местоположения преобразователя относительно дефекта.

Рисунок 7 – Годограф вносимого напряжения ВТП-2 от дефекта

Рисунок 8 – Зависимость амплитуды сигнала от дефекта от положения ВТП-2 относительно дефекта

В отличие от абсолютного ВТП-1 амплитуда сигнала от дефекта в этом случае максимальна при расстоянии между вертикальной плоскостью симметрии преобразователя и прорезью равном ± 2 мм, а при центральном положении обмотки относительно дефекта равна нулю. Годограф вносимого напряжения представляет собой вытянутую восьмерку. Максимальное значение сигнала от дефекта для ВТП-2 существенно меньше, чем для ВТП-1, однако этот недостаток компенсируется отсутствием у ВТП-2 начального напряжения при установке преобразователя на поверхность объекта контроля и соответственно отсутствием сигнала от изменения зазора между преобразователем и контролируемой поверхностью. Другим достоинством ВТП-2 является существенно меньшее влияние на результаты контроля неоднородности электрических и магнитных характеристик материала объекта контроля.

Высокую эффективность для решения широкого круга задач вихретоковой дефектоскопии показали мультидифференциальные ВТП [3].

Рисунок 9 – Мультидифференциальный ВТП с квадратными обмотками над прорезью

На рисунке 9 схематично показан планарный вариант мультидифференциального ВТП (ВТП-3) с квадратными двухсекционными возбуждающей 1 и измерительной 2 обмотками. Размеры секций обмоток 5×5 мм². Направления намотки показаны стрелками. Особенностью ВТП такой конструкции является то, что при расположении преобразователя на бездефектном участке в секциях измерительной обмотки отсутствуют начальные напряжения и, таким образом, можно считать, что двухсекционная обмотка возбуждения в совокупности с отдельной секцией измерительной обмотки составляют дифференциальный ВТП. А поскольку секции измерительной обмотки включены также дифферениально, то в совокупности получается двойное дифференциальное (мультидифференциальное) включение обмоток ВТП. Достоинством такого ВТП является, как и в случае ВТП-2, отсутствие сигнала от изменения зазора между преобразователем и контролируемой поверхностью и еще меньшее влияние на результаты контроля неоднородности электромагнитных свойств материала объекта. Следует отметить. что для получения сигналов от протяженных дефектов в случае ВТП-3 производится сравнение реакций от взаимодействия с контролируемой пластиной вихревых токов двух ортогональных направлений, в отличие от ВТП-2, при использовании которого сравниваются реакции

РАЗДЕЛ 1. МОДЕЛИРОВАНИЕ, РАСЧЕТ И ОБРАБОТКА ДАННЫХ В АВТОМАТИЗИРОВАННЫХ СИСТЕМАХ

от взаимодействия с пластиной вихревых токов параллельных направлений.

На рисунке 10 показано распределение плотности вихревого тока для случаев расположения дифференциального ВТП-3 над бездефектным участком (рисунок 10*a*) и симметрично относительно прорези (рисунки 10*6*,10*e*).

Рисунок 10 – Картина вихревых токов на поверхности пластины при взаимодействии с полем ВТП-3

Рисунок 11 – Годограф вносимого напряжения ВТП-3 от дефекта

На рисунке 11 показан годограф вносимого напряжения ВТП-3 от перемещения преобразователя над дефектом, а на рисунке 12 – зависимость амплитуды вносимого напряжения от местоположения преобразователя относительно дефекта. Следует отметить, что амплитуда сигнала от протяженного дефекта, как и в случае абсолютного ВТП-1, максимальна при центральном положении обмотки относительно дефекта.

Рисунок 12– Зависимость амплитуды сигнала от дефекта от положения ВТП-3 относительно дефекта

Заключение

С использованием разработанных в среде Comsol Multiphysics 3D моделей исследованы различные по конструкции варианты накладного планарного трансформаторного ВТП. Определены сигналы вихретоковых преобразователей, возникающие в результате взаимодействия магнитного поля преобразователя с протяженным поверхностным дефектом типа прорезь. Исследованы особенности использования этих преобразователей для решения задач дефектоскопии.

СПИСОК ЛИТЕРАТУРЫ

- Гольдштейн, А.Е. Бесконтактная система контроля соосности с беспроводным интерфейсом [Текст] / А.Е. Гольдштейн, Д.В. Алимов, Д.В. Вахрушев, Е.В. Якимов // Ползуновский вестник. – 2011. – № 3/1. – С. 136-140
- Rosado, Luís S. Non-Destructive Testing Based on Eddy Currents / Luís S. Rosado // Instituto Superior Técnico, UTL, Lisbon, Portugal. – C. 1-10.
- Учанин, В.Н. Вихретоковые мультидифференциальные преобразователи и их применение [Текст] / В.Н. Учанин // Техн. диагностика и неразруш. контроль. – 2006. – № 3. – С. 34–41.

Д.т.н., зав. кафедрой Гольдштейн А.Е., algol@tpu.ru; магистрант Белянков В.Ю., belyankovvy@sibmail.com - Национальный исследовательский Томский политехнический университет, кафедра информационно-измерительной техники, тел. (3822) 418911.

ПОЛЗУНОВСКИЙ ВЕСТНИК № 2, 2014