ПАЛЛАДИЕВЫЕ КАТАЛИЗАТОРЫ НА ОКСИДНЫХ МАТРИЦАХ ДЛЯ ГИДРИРОВАНИЯ НИТРОСОЕДИНЕНИЙ

вых катализаторах, нанесённых на оксид гадолиния // Изв. ВолгГТУ. Серия "Химия и технология элементоорганических мономеров и полимерных материалов". Вып. 6: межвуз. сб. науч. ст. / ВолгГТУ. – Волгоград, 2009. – № 2. – С. 87-90.

- 9. Образцова И.И., Ефимов О.А., Еременко Н.К., Солодов Г.А., Волхонский М.Г. Способ получения этилового эфира п-аминобензойной кислоты. Пат. 2203885 РФ. Б.И. 10.05.2003. № 13.
- 10. Образцова И.И., Ефимов О.А., Сименюк Г.Ю., Миньков А.И. Палладиевые трифенилфосфиновые катализаторы гидрирования ароматических нитросоединений// Труды Междунар. научно-практич. конф. «Химия XXI век: новые технологии, новые продукты». Кемерово, 2000. С. 62-64.
- 11. Образцова И.И., Еременко Н.К., Велякина Ю.Н. Кинетика реакции гидрирования нитробензола на палладиевом катализаторе, нанесенном на наноалмаз // Кинетика и катализ. 2008. Т.49. № 3. С. 422-428.
- 12. Магдалинова Н.А., Клюев М.В., Вершинин Н.Н., Ефимов О.Н. Рt- и Рd-содержащие наноалмазы в гидрировании и гидроаминировании // Сборник тезисов Российского конгресса по катализу «Роскатализ-2011». Москва, 2011. Т. 1. С. 56.
- 13. Кущ С.Д., Куюнко Н.С., Тарасов Б.П. Наночастицы платины на фуллереновой черни как эффективные катализаторы гидрирования.// Журнал общей химии. 2009. Т. 79. Вып. 6. С. 934-941.
- 14. Беляев С.В., Вайнштейн Э.Ф., Клюев М.В. // Кинетика и катализ. 2002. Т. 43. № 2. С. 269-274.
- 15. Сивохин В.В., Токпаев Р.Р., Аккужиев А.С., Еф-

- ремов С.А., Наурызбаев М.К. Получение углеродпалладиевых катализаторов на основе минерального сырья республики Казахстан // Материалы I Международной российско-казахстанской конференции «Химия и химическая технология». – Томск, ТГУ, 2011. – С. 154-157.
- 16. Комаров А.А. Разработка технологии жидкофазного восстановления нитробензола водородом на высокопористом ячеистом катализаторе. // Дисс... канд. техн. наук, Москва, 2005. – 143 с.
- 17. Rodriguez P., Simescu-Lazar F., Meille V. etc. Carbon-coated structured supports. Preparation and use for nitrobenzene hydrogenation. // Applied Catalysis A: General. 2012. V. 427 –428. P. 66 –72.
- 18. Kataoka S., Takeuchi Y., Harada A. etc. Microreactor containing platinum nanoparticles for nitrobenzene hydrogenation. // Applied Catalysis A: General. 2012. V. 427 –428. P. 119 –124.
- 19. Liu C., Tan R., Yu N., Yin D. Pt–Pd bi-metal nanoparticles captured and stabilized by imine groups in a periodicmesoporous organosilica of SBA-15 for hydrogenation of nitrobenzene. // Microporous and Mesoporous Materials. 2010. V. 131. P. 162–169
- 20. Семиколенов В.А. Нанесенные металлические катализаторы / в книге: Промышленный катализ в лекциях, под ред. А.С. Носкова. М.:Калвис, 2005. Т. 2. С. 79-101.
- 21. Розанов В.В., Крылов О.В. Спилловер водорода в гетерогенном катализе // Успехи химии. 1997. Т.66. \mathbb{N} 2. С.117-130.

ГЕКСА(ИЗОТИОЦИАНАТО)ХРОМАТЫ(III) КОМПЛЕКСОВ ЛАНТАНОИДОВ(III) ЦЕРИЕВОЙ ГРУППЫ С НИКОТИНОВОЙ КИСЛОТОЙ

Черкасова Е.В., Черкасова Т.Г.

Синтезированы соединения $[M(C_5H_5NCOO)_3(H_2O)_2][Cr(NCS)_6] \cdot nH_2O$, M = La, n=2 (1); M = Nd, n=1 (2). Комплексы изучены методами химического, ИК-спектроскопического, рентгеноструктурного анализов.

Ключевые слова: двойные комплексные соединения, (изотиоцианато)хроматы(III), лантаноиды, никотиновая кислота

ВВЕДЕНИЕ

Инертный анионный комплекс $K_3[Cr(NCS)_6] \cdot 4H_2O$ удобен для прямого синтеза двойных комплексных соединений (ДКС), перспективных в качестве предшественников для получения функциональных материалов. Ранее нами представлены результаты исследования гекса(изотиоцианато)хроматов(III) комплексов лантаноидов с ϵ -капролактамом [1-9], для получения которых использован

анион $[Cr(NCS)_6]^{3-}$. Цель настоящей работысинтез и физико-химическое исследование гекса(изотиоцианато)хроматов(III) комплексов некоторых лантаноидов(III) цериевой группы с никотиновой кислотой.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для получения ДКС использованы нитраты лантана(III) и неодима(III) составов $Ln(NO_3)_3 \cdot 6H_2O$, никотиновая кислота марок

«х.ч.» и $K_3[Cr(NCS)_6]\cdot 4H_2O$, полученный согласно [10].

При сливании умеренно концентрированных водных растворов 5,89 г (0,01 моль) комплексной соли $K_3[Cr(NCS)_6]\cdot 4H_2O$ и 3,69 г (0,03 моль) никотиновой кислоты в интервале pH 4-6 с последующим добавлением 4,32 г (0,01 моль) нитрата лантана(III) или 4,38 г (0,01 моль) нитрата неодима(III) и высушивании сразу же выпавших осадков получены бледно-сиреневые мелкокристаллические порошки. Выход составил 65-66%.

Составы соединений установлены методами химического анализа на компоненты. Химический анализ на содержание ионов лантана(III) и неодима(III) выполнены гравиметрически осаждением в виде оксалатов с последующим прокаливанием до оксидов [11], количество хрома определено фотоколориметрическим методом [12], углерода и водорода — пиролитическим сжиганием навески в быстром токе кислорода при 900°C [13]. Результаты анализов следующие.

,	Nd	Cr	C	Н
Найдено, %	14,83	5,29	29,72	2,18
Для	14,90	5,37	29,78	2,17
C ₂₄ H ₂₁ CrN ₉ NdO ₉ S ₆				
вычислено,%				
	La	Cr	С	Н
Найдено, %	14,37	5,32	29,88	2,15
Для	14,17	5,30	29,40	2,34
$C_{24}H_{23}CrLaN_9O_{10}S_6$				
вычислено,%				

Строение веществ установлено ИК - спектроскопическим методом по смещению основных полос поглощения лигандов (инфракрасный Фурье-спектрометр System-2000 фирмы Perkin-Elmer, интервал 4000-400 см⁻¹, таблетки в матрице KBr).

Рентгеноструктурный анализ соединений выполнен: для ДКС лантана (1) на автоматическом четырехкружном дифрактометре SuperNova (Agilent Technologies) при температуре 123.0 К с использованием фокусированного рентгеновскими зеркалами излучения медного анода (источник Supernova Cu, λ =1.54178 Å), для ДКС неодима (2) — на автоматическом четырехкружном дифрактометре Bruker X8Apex при температуре 150.0 К с использованием излучения молибденового анода (λ =0.71073 Å) и графитового монохроматора.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Мелкокристаллические порошки ДКС 1 и 2 бледно-сиреневого цвета, устойчивы при хранении на воздухе, плохо растворимы в воде, этиловом спирте, ацетоне, толуоле, и

хорошо растворимы в диметилсульфоксиде и диметилформамиде. Вещества имеют состав $[M(C_5H_5NCOO)_3(H_2O)_2][Cr(NCS)_6]\cdot nH_2O$, M=La, n=2(1); M=Nd, n=1(2).

Частоты полос поглощения комплекса $\mathbf{1}$ (v, см $^{-1}$): 3435 с., 3076 ср., 2080 с., 1686 ср., 1630 с., 1580 оч.с., 1414 оч.с., 1180 сл., 830 сл., 752 с., 683 сл., 510 сл.; соединения $\mathbf{2}$ (v, см $^{-1}$): 3438c, 3078cp, 2862cл, 2081оч.с, 1686cp, 1632c, 1579оч.с, 1414оч.с, 1183сл, 1102сл, 1035сл, 830сл, 750c, 685cp, 512сл.

Анализ ИК – спектров показал, что оба комплекса являются изотиоцианатными [14], координация ионов лантана(III) неодима(III) осуществляется через атомы кислорода карбонильных групп [15]. При синтезе в растворе никотиновой кислоты вследствие прототропной таутомерии происходит перенос протона карбоксильной группы к атому азота с образованием сопряженной системы. Вследствие имино-аминной таутомерии никотиновой кислоты образуется пиридиний-3карбоксилат-ион [16,17]. Никотиновая кислота становится бидентатным лигандом, координируясь к комплексообразователям через кислород карбоксильной группы. Это проявляется в ИК-спектрах 1 и 2 группой полос в интервале 1630-1180 см⁻¹.

Рентгеноструктурный анализ показал, что кристаллы 1 и 2 моноклинной сингонии, пространственная группа P2₁/n. Кристаллографические характеристики ДКС 1: a=9,66800(10), b=25,7662(2), c=15,4843(2) Å, $\beta = 106,4700(10)^{0}$ V=3698,99(7) $\rho_{\text{выч}} = 1,761 \text{г/cm}^3$, ДКС 2: a=9,53120(10),b=25,5166(4),c=15,3843(3) Å, β =104,9450(10)⁰, V=3614,96(10) Å^3 , ρ_{Bbly} =1,779г/см³.

Комплекс 2 отличается от 1 по гидратному составу, что приводит к сокращению всех параметров элементарной ячейки моногидрата и уменьшению ее объема по сравнению со структурой дигидрата.

кристаллической структуре $[M(C_5H_5NCOO)_3(H_2O)_2][Cr(NCS)_6] \cdot nH_2O, M =$ La, Nd, катион имеет полимерное цепочечное строение за счет бидетнатно-мостиковой функции молекул никотиновой кислоты. Ионы лантана(III) и неодима(III) находятся в искаженно квадратно-антипризматическом окружении. Координационная сфера атома хрома в анионе октаэдрическая с незначительными отклонениями от идеальной. В цепи происхочередование звеньев $\{M_2(C_5H_5NCOO)_4\}$ μ $\{M_2(C_5H_5NCOO)_2(H_2O)_4\}$. Во втором звене координированные молекулы воды участвуют в образовании внутримолекулярных водородных связей. Межмолекулярные водородные связи с участием поли-

ГЕКСА(ИЗОТИОЦИАНАТО)ХРОМАТЫ(III) КОМПЛЕКСОВ ЛАНТАНОИДОВ(III) ЦЕРИЕВОЙ ГРУППЫ С НИКОТИНОВОЙ КИСЛОТОЙ

мерного катиона реализуются за счет пиридиниевых атомов водорода молекул никотиновой кислоты. Межмолекулярные контакты объединяют полимерные катионы, анионы $[Cr(NCS)_6]^{3-}$ и сольватные молекулы воды в трехмерную систему.

Синтезы гекса(изотиоцианато)хроматов(III) комплексов лантаноидов(III) с никотиновой кислотой условно можно отнести к «генеалогическим» так же, как и синтезы других ДКС с гекса(изотиоцианато)хромат(III)-анионом. В таких синтезах получаются продукты, строение и состав которых связаны со строением и составом исходных веществ В данном случае это обусловлено использованием в синтезах инертного комплексного иона $[Cr(NCS)_6]^{3-}$, благодаря которому можно проследить генеалогические связи между продуктами реакции и исходными веществами.

ЗАКЛЮЧЕНИЕ

Следует отметить различия в строении катионов ДКС лантаноидов С капролактамом и никотиновой кислотой, обусловленные, прежде всего, дентатностью лигандов. ε-Капролактам во всех изученных гекса(изотиоцианато)хроматах(III) комплексов лантаноидов(III) с этим органическим соединением проявил себя как монодентатный лиганд, связанный с атомами лантаноидов через кислород карбонильной группы, в то время как никотиновая кислота показала себя бидентатным лигандом, что привело к полимерному цепочечному строению катионов в ДКС 1 и 2. Координационное окружение атома хрома(III) во всех изученных ДКС лантаноидов представляет собой слабо искаженный октаэдр, независимо от нейтрального органического лиганда в катионе.

Авторы выражают глубокую благодарность за помощь в проведении и обсуждении результатов РСА сотрудникам ИНХ СО РАН Е.В. Пересыпкиной и А.В. Вировцу.

СПИСОК ЛИТЕРАТУРЫ

- 1. Cherkasova E. V., Virovets A. V., Peresypkina E. V., Podberezskaya N. V., Cherkasova T. G. Synthesis and crystal structure of octa(ε-caprolactam) neodymium(III) hexa(isothiocyanate)chromate(III) // Inorganic Chem. Communications.- 2006. V.9, №1. P. 4-6.
- Cherkasova E. V., Peresypkina E. V., Virovets A. V., Podberezskaya N. V., Cherkasova T. G. Octakis(ε-

- caprolactam-kO) erbium(III) hexaisothiocyanato-chromate(III) // Acta Crystallogr. Sect. C: Cryst. Struct. Comm.- 2007. V. 63, P. 195-198.
- 3. Вировец А. В., Пересыпкина Е.В., Черкасова Е.В., Черкасова Т.Г., Подберезская Н.В.. Структурные типы гекса(изотиоцианато)хроматов(III) окта(ε-капролактам) лантаноидов(III). Фазовый переход с обратимым двойникованием // Журн. неорг. химии.- 2009. -Т. 50, №1.- С. 144-155.
- 4. Черкасова Е.В., Татаринова Э.С., Черкасова Т.Г., Трясунов Б.Г. Гекса(изотиоцианато)хроматы(III) комплексов лантаноидов цериевой группы с ε-капролактамом// Изв. вузов. Химия и хим. технология. 2006. Т.49, №5. С.11-13.
- 5. Черкасова Е.В., Черкасова Т.Г., Татаринова Э.С. Физико-химические свойства двойных комплексных солей гекса(изотиоцианато)хроматов(III) комплексов лантаноидов(III) иттриевой группы с εкапролактамом // Изв. вузов. Химия и хим. технология.- 2011.- Т.54, №1.- С.21-23.
- 6. Черкасова Е.В., Вировец А.В., Пересыпкина Е.В., Черкасова Т.Г. Сесквигидрат гекса(изотиоцианато)хромат(III) тетраакватетра(εкапролактам) лютеция(III.//Журн. неорган. химии.-2009.-Т.54, № 2.-С.315-320.
- 7. Черкасова Е.В., Вировец А.В., Пересыпкина Е.В., Черкасова Т.Г., Подберезская Н.В. Синтез и кристаллическая структура гекса(изотиоцианато)-хромата(III) окта(ε-капролактам) эрбия (III) // Журн. неорган. химии.- 2008.- Т. 53, №7.-С. 1199-1204.
- 8. Черкасова Е.В., Вировец А.В., Пересыпкина Е.В., Черкасова Т.Г., Подберезская Н.В. Синтез и кристаллическая структура гекса(изотиоцианато)-хромата(III) окта(ε-капролактам) эрбия (III) // Журн. неорган. химии.- 2008.- Т. 53, №7.-С. 1199-1204.
- 9. Черкасова Е.В. Получение и свойства гекса(изотиоцианато)хромата(III) окта(ε-капролактам)-иттрия // Ползуновский вестник.- 2010.-№3.- С.27-29
- 10. Брауэр Г., Руководство по неорганическому синтезу.-М: Мир,1985., Т.5,С.1617.
- 11. Шарло Г., Методы аналитической химии.- М.: Химия, 1965.- 975 с.
- 12. Уильямс У.Дж., Определение анионов.- М.: Химия, 1982.- 642 с.
- 13. Климова В.А., Основные микрометоды анализа органических соединений.- М.: Химия, 1975.-223 с.
- 14. Химия псевдогалогенидов / Под ред. Ф.М. Голуба, Х. Келера, В. Скопенко. -Киев: Вища шк., 1981.- 360 с.
- 15. Смит А., Прикладная ИК-спектроскопия.- М.: Мир, 1982.-328с.
- 16. Денисов В.Я., Мурышкин Д.Л., Чуйкова Т.В. Органическая химия.- М.: Высш. шк., 2009.- 544с.
- 17. Боровлев И.В. Органическая химия: термины и основные реакции. М.: БИНОМ. Лаб.знаний, 2010. 359 с.