О ВЛИЯНИИ ЛЕГИРУЮЩИХ ЭЛЕМЕНТОВ НА МЕХАНИЧЕСКИЕ СВОЙСТВА БЫСТРОРЕЖУЩИХ СТАЛЕЙ С ИНТЕРМЕТАЛЛИДНЫМ УПРОЧНЕНИЕМ

Л.Д. Собачкина, В.Б. Бутыгин, А.С. Демидов

Рассмотрены пути легирования быстрорежущих сталей элементами в количестве, позволяющем повысить их механические свойства и теплостойкость.

Исследуемые стали дополнительно легировались Al, Cr, Ti, Si, Zr, Nb, N и исследовались после отжига и закалки.

Разработаны режимы отжига и закалки при различных видах легирования.

Ключевые слова: термическая обработка, легирование, теплостойкость, интерметаллиды, твёрдость, фазовый состав, механические свойства, карбиды, упрочнение, быстрорежущие стали.

Разработанные на кафедре металловедения Мосстанкина быстрорежущие стали с интерметаллидным упрочнением, типа В14М7К25, В11М7К23, В3М12К23 [1, 2], обеспечивают высокую теплостойкость (до $720\,^{\circ}$ C) и вторичную твёрдость (HRC 67-68), что значительно выше, чем у быстрорежущих сталей с карбидным упрочнением.

Но на наш взгляд, возможности повышения свойств быстрорежущих сталей с интерметаллидным упрочнением не иссякли. В связи с этим, изучение путей легирования этих сталей для повышения теплостойкости, механических свойств, технологических свойств остаются актуальными.

В работах Геллера Ю.А., Кремнева Л.С., Брострема В.А., Бутыгина В.Б. и др. [3–8] достаточно много написано о влиянии вольфрама, молибдена, кобальта на свойства быстро-

режущих сталей с интерметаллидным упрочнением. Однако о влиянии других легирующих элементов сведения ограничены.

Разработка сталей ещё большей теплостойкости может быть успешна при условии повышения температур фазовых превращений или увеличения количества упрочняющей фазы. Для решения этой задачи и существенного улучшения механических и технологических свойств необходимы исследования и разработка путей рационального легирования сталей с интерметаллидным упрочнением.

В основу наших исследований было принято дополнительное легирование алюминием, хромом, титаном, кремнием, цирконием, ниобием, азотом молибдено-вольфрамокобальтовых сталей. Химический состав исследованных сталей приведен в таблице 1.

T-6 1	V				_ 0/*
таолица т -	- химическии с	состав сталеи.	принятых для	исследования.	В %"

Сталь	Al	Cr	Ti	Si	Zr	Nb	N
B3M12K23	-	-	-	-	-	-	-
В3М12К23Ю	2,8–1,0		-	-	-	-	-
В3М12К23Ю1,5	1,2–1,5	-	-	-	-	-	-
B3M12K23X	-	0,8–1,0	-	-	-	-	-
B3M12K23X1,5	-	1,2-1,5	-	-	-	-	-
B3M12K23T	- '	-	0,8–1,0	-	-	-	-
B3M12K23T1,5	-	-	1,2–1,5	-	-	-	-
B3M12K23C(0,15)	-	- '	-	0,1-0,15	-	-	-
B3M12K23C(0,30)	-	-	-	0,3-0,35	-	-	-
ВЗМ12К23Ц(0,05-0,09)	-	-	-	-	0,05-0,09	-	-
ВЗМ12К23Б(0,2-0,3)	-	-	-	-	-	0,2-0,3	-
B3M12K23A(0,03-0,07)	-	-	-	-	-	-	0,03-0,07

*Рамками обведены компоненты, влияние которых специально исследовалось. Во всех сталях: 0,09–0,14 % С, 2,5–3,5 % W, 11,5–12,15 % Mo, 22–23 % Co, 0,1–0,3 % V.

О ВЛИЯНИИ ЛЕГИРУЮЩИХ ЭЛЕМЕНТОВ НА МЕХАНИЧЕСКИЕ СВОЙСТВА БЫСТРОРЕЖУЩИХ СТАЛЕЙ С ИНТЕРМЕТАЛЛИДНЫМ УПРОЧНЕНИЕМ

За основу исследованных сталей была принята сталь B3M12K23. Как показали исследования [2], рациональное повышение механических свойств без снижения температур α —у превращения достигается созданием молибдено-вольфрамовой, а не вольфрамомолибденовой основы. Молибден в меньшей степени искажает кристаллическую решётку α -фазы в упрочнённом состоянии и несколько улучшает теплопроводность. Вместе с этим, обеспечивает несколько лучшие механические свойства, чем в вольфрамо-молибденовых сталях B14M7K25 и B11M7K23.

Содержание углерода в исследованных сталях составляло 0,09–0,14 мас. %. Увеличение содержания углерода выше 0,14 мас. % может привести к образованию наряду с интерметаллидной фазой карбида типа M_6C .

При исследовании использовались ме-

тоды: металлографический анализ, определение механических свойств, определение физических свойств (удельного электросопротивления, коэрцитивной силы, намагниченности насыщения), дилатометрический анализ, рентгеноструктурный анализ.

ТВЁРДОСТЬ ПОСЛЕ ОТЖИГА

Исследования показали, что с увеличением скорости охлаждения с температур отжига в пределах: воздух-масло-вода, несколько понижается твёрдость. Но это снижение незначительно. Ниже даны результаты определений твёрдости для случая охлаждения на воздухе, как более удобного на практике.

Для этого условия роль состава сталей характеризуется следующим: (таблица 2).

Таблица 2 – Твердости отожжённых сталей в зависимости от температуры изотермической выдержки и условий легирования

Сталь	Твёрд	Т изотермической		
Сталь	До отжига	После отжига	выдержки, ⁰С	
B3M12K23	44	33–34	880	
В3М12К23Ю	46	36–37	890–900	
В3М12К23Ю1,5	47	38–39	890–900	
B3M12K23X	43	34–35	860	
B3M12K23X1,5	44	41–42	860	
B3M12K23T	44	33–34	890–900	
B3M12K23T1,5	44	33–34	890–900	
B3M12K23C(0,15)	42	30–31	890–900	
B3M12K23C(0,30)	42	30–31	890–900	
В3М12К23Ц(0,05-00,9)	41	29–30	890–900	
В3М12К23Б(0,2-0,3	41	29–30	890–900	
B3M12K23A(0,03-0,07)	41	29–30	890–900	

Наиболее низкая твёрдость обеспечивается в случае изотермической выдержки при . 860–900 °C.

Для сталей, дополнительно легированных алюминием температура изотермической выдержки должна быть по верхнему пределу $900\,^{\circ}$ С. Это вызвано тем, что алюминий понижает температуры α – γ превращения.

Стали дополнительно легированные хромом, кремнием, титаном, цирконием, ниобием имеют меньшую твёрдость после отжига, что улучшает обрабатываемость резанием.

СТАЛИ В ЗАКАЛЁННОМ СОСТОЯНИИ

Образцы для исследования закаливали от температур 1200–1300 °С с интервалом в 25 °С. Выдержка при окончательном нагреве ПОЛЗУНОВСКИЙ ВЕСТНИК № 3 2016

была принята из расчета 60 секунд на 1 мм толщины образца. Это вызвано тем, что интерметаллидные частицы растворяются менее интенсивно. По этой причине склонность к росту зерна при высоком нагреве у исследуемых сталей значительно меньше, чем у сталей с карбидным упрочнением. При выбранной выдержке обеспечивается практически полное насыщение у-фазы легирующими элементами. Более длительные выдержки мало увеличивали легированность твёрдого раствора и лишь приводили к некоторому росту зерна. Достаточно указать, что удельное электросопротивление стали ВЗМ12К23, закалённой от 1250 °C, с охлаждением в масле, в случае выдержки 10 мин (60 сек/мм) составляло 0.807 Ом⋅мм²/м. а в результате выдержки 20 мин (120 сек/мм) возрастает лишь до 0,810 Ом-мм²/м. Зерно при этом увеличилось с балла 10–11 до балла 10–9 при указанном дополнительном увеличении выдержки.

Из анализа диаграммы изотермического превращения у-фазы видно, что начало превращения аустенита в мартенсит наблюдается при 410 °С, при 100 °С практически заканчивается. В связи с этим в исследуемых сталях после закалки отсутствует остаточный аустенит, что даёт возможность подвергать

их однократному отпуску после закалки.

Характерно, что легирование стали хромом (1,5 %) позволяет сохранить мелкое зерно балла 11 (таблица 3). В данном случае под влиянием хрома повышается устойчивость металлической основы против роста зерна. Прирост удельного электросопротивления при закалке стали с хромом невелик. Это вновь подтверждает, что хром присутствует в основном в α-фазе.

Таблица 3 – Влияние легирования на балл зерна, твёрдость, коэрцитивную силу, намагниченность насыщения и удельное электросопротивление (закалка от 1250 °C)

Сталь	Балл зерна	Твёр- дость, НКС	Намагниченность насыщения $4\pi J_s$,	Коэрцитивная сила Нс, ЭРСТ	Удельное электросопро- тивление р, Ом-мм ² /м
B3M12K23	10–11	48	18298	99	0,807
В3М12К23Ю1,5	10	52	16385	108	0,868
B3M12K23X1,5	10–11	47	17486	94	0,932
B3M12K23T	10–11	48	16800	110	0,986
B3M12K23C(0,30)	10–12	51	16580	109	0,986
В3М12К23Ц(0,05-00,9)	11–12	50	16660	101	0,980
В3М12К23Б(0,2-0,3)	11–12	48	16380	103	0,985
B3M12K23A(0,03-0,07)	11–12	50	16700	104	0,960

Алюминий, подобно хрому, присутствует в твёрдом растворе, но при увеличении температуры закалки выше 1250 °С наблюдается рост зерна до 9–10 балла. Это объясняется образованием в структуре сталей с алюминием δ -феррита.

В сталях с титаном твёрдость остаётся высокой, равно как и сохраняется мелкое зерно балла 10–11. Следовательно, небольшие добавки титана 0,8–1,2 % повышают устойчивость к росту зерна. Кроме этого, наличие титана в сплаве способствует уменьшению количества молибдена и вольфрама, перешедшее в твёрдый раствор при закалке (на основании химического анализа анодных осадков). Но практически установлено, что увеличение содержания титана выше 1,2 % ухудшает качество поверхности слитка и приводит к снижению ударной вязкости.

В сталях легированных кремнием сохраняется мелкое зерно (балл 11–12) после закалки. На основании рентгеноструктурного анализа, в этих сталях фиксируется наряду с интерметаллидной фазой и фаза Лавеса. Кремний способствует заметному возрастанию закалочной твёрдости. Эти данные подтверждаются измерениями физических свойств [9].

Исследования показали, что легирова-

ние исследуемых сталей ниобием способствует устойчивости к росту зерна. Зерно балла 11–12 (больше балла 11) сохраняется и при нагреве под закалку до 1275 °С. Но микролегирование ниобием должно быть ограничено, так как увеличение его содержания более 0,3 % приводит к снижению прочностных свойств после старения [10, 11].

Как показал металлографический анализ, в сталях легированных цирконием сохраняется после закалки мелкое зерно балла 11–12. Причём, разнозёрность значительно меньше, чем при легировании ниобием или кремнием. Несколько снизилась закалочная твёрдость. Что свидетельствует о переходе циркония в твёрдый раствор. Малые добавки циркония способствуют возможности повышения температуры закалки, что может повысить теплостойкость стали.

Микролегирование исследуемых сталей азотом, как показывает микроанализ, позволяет сохранить при закалке мелкое зерно. Оно, как и при легировании, цирконием, составляет 11–12 баллов. Мелкое зерно сохраняется при нагреве под закалку до более высоких температур, чем при легировании другими элементами (Cr, Si, Ti, Zr, Nb).

О ВЛИЯНИИ ЛЕГИРУЮЩИХ ЭЛЕМЕНТОВ НА МЕХАНИЧЕСКИЕ СВОЙСТВА БЫСТРОРЕЖУЩИХ СТАЛЕЙ С ИНТЕРМЕТАЛЛИДНЫМ УПРОЧНЕНИЕМ

выводы

- 1. Показана возможность микролегирования Mo-W-Co сталей, с целью улучшения свойств.
- 2. Микролегирование способствует сохранению мелкого зерна в широком диапазоне закалочных температур.
- 4. Особенно существенно влияние циркония и азота.
- 5. Заслуживает внимания исследование совместного легирования цирконием и азотом.
- 6. Полученные результаты дают основания для дальнейших исследований этих сталей на механические и технологические свойства после закалки (на вторичную твёрдость).

СПИСОК ЛИТЕРАТУРЫ

- 1. Геллер, Ю. А. Инструментальные стали / Ю. А. Геллер. М. : Металлургия, 1975. 584 с.
- 2. Бутыгин, В. Б. Исследование инструментальных сталей и сплавов высокой теплостойкости с интерметаллидным упрочнением : автореф. дис. ... канд. техн. наук / В. Б. Бутыгин. М. : ХЭЗУ Миннефтепрома, 1975. 26 с.
- 3. Бутыгин, В. Б. Зависимость теплостойкости от отжига стали Р6М5 / В. Б. Бутыгин, М. И. Апарин, А. А. Шиллер // Проблемы и перспективы развития литейного, сварочного и кузнечноштамповочного производств: сб. науч. тр. Барнаул, 2009. С. 159—161.
- 4. Кремнев, Л. С. Развитие теории легирования и разработка оптимальных составов теплостойких инструментальных сталей: автореф. ... дис. д-ра техн. наук / Л. С. Кремнев. М.: МИИТа, 1974. 45 с.
- 5. Бутыгин, В. Б. Твёрдость быстрорежущих сталей с интерметаллидным упрочнением после отжига в зависимости от легирования / В. Б. Бутыгин, С. А. Опаликов, В. И. Варфоломеев // Проблемы и перспективы развития литейного, свароч-

- ного и кузнечно-штамповочного производств : сб. науч. тр. Барнаул, 2009. С. 198–202.
- 6. Бутыгин, В.Б. Влияние легирования на свойства штамповых сплавов высокой теплостой-кости / В.Б. Бутыгин, А.С. Демидов // Литейные процессы: сб. науч. тр. Магнитогорск, 2010. С. 50—54.
- 7. Демидов, А. С. Влияние химического состава на свойства штамповых сплавов высокой теплостойкости / А. С. Демидов, В. Б. Бутыгин // Ползуновский вестник. 2015. № 1. С. 3–5.
- 8. Собачкина, Л. Д. Разработка штамповых сталей различной теплостойкости / Л. Д. Собачкина, В. Б. Бутыгин // Ползуновский вестник. 2015. № 3. С. 28—30.
- 9. Скрипченко, Ю. М. О влиянии кобальта и кремния на процессы превращения / Ю. М. Скрипченко // Инструментальные и подшипниковые стали. 1980. № 1. С. 11–18.
- 10. Геллер, Ю. А. Влияние микролегирования на улучшение свойств стали P6M5 / Ю. А. Геллер, Л. Я. Гришина // Станки и инструмент. 1976. № 6. С. 23—24.
- 11. Гришина, Л. Я. Исследование влияния микролегирования на превращения, структуру и свойства вольфрамо-молибденовых быстрорежущих сталей: автореф. ... дис. канд. техн. наук / Л. Я. Гришина. М.: МИИТа, 1976. 22 с.

Собачкина Лариса Джумаевна — магистрант, ФГБОУ ВО Алтайский государственный технический университет им. И.И. Ползунова, e-mail: karpov43@list.ru.

Бутыгин Виктор Борисович — к.т.н., профессор кафедры МТиО, ФГБОУ ВО Алтайский государственный технический университет им. И.И. Ползунова, e-mail: mtio2014@list.ru.

Демидов Александр Станиславович – к.т.н., доцент, кафедры МТТ, ФГБОУ ВО Уральский государственный университет путей сообщения, e-mail: hph00@yandex.ru.